ALUMINUM •STAINLESS STEEL • AEROSPACE ALLOYS

CANADIAN DISTRIBUTOR OF SPECIALTY METAL PRODUCTS

HEAT RESISTANT, CORROSION RESISTANT, WEAR RESISTANT

www.asaalloys.com

INTRODUCTION

Thank you for taking the time to read about ASA Alloys. We hope this Reference Guide will help us better serve you. This guide outlines products, grades, shapes, weights and standard lengths.

ASA Alloys has enjoyed over 30 years of growth - growth which can only be obtained by offering Quality- • Service

- Product
- Delivery
- Sales Representatives

MISSION STATEMENT

We the employees of ASA Alloys are committed to quality and excellence in everything we do.

Our first responsibility is to the people who purchase and use our products and services. We are dedicated to providing them with superior quality, service and value, striving to exceed our customers expectations in a manner which promotes their respect and loyalty.

Quality, as defined by our customers, is our primary objective. Continuous quality improvement principles will be employed to enhance this objective.

SOURCING

If you are currently purchasing hard to find alloys, sizes or shapes that are not listed in our Reference Guide let our experienced Customer Sales Force Group locate your requirements with our extensive sourcing knowledge.

SERVICES

- Stock items delivered the next day.
- Material cut to your tolerance and to meet your delivery requirements.
- Automatic saw cutting up to 23" bar.
- Polishing (180 grit or #4)
- Centreless grinding to your specifications.

STAINLESS STEEL BAR SIZES AND WEIGHT TABLES

Stainless Rounds	5
Stainless Flats	6
Stainless Squares	
Stainless Hexagons	′
Stainless Angles	
Stainless Channels	0
Stainless Beams	
Round Tubing - Standard Size	9
Square and Rectangular Tubing - Standard Size	10
Round Tubing - Size Tolerances	11
Square and Rectangular Tubing - Size Tolerances	11
Tolerance Guidelines	
Stainless Welded Pipe and Seamless Pipe	12
Stainless Steel Sheets	14
Stainless Steel Coils	15
Stainless Steel Plates	16
Stainless Diamond Floor Plates	17
Stainless Steel Perforated Metal	
Standard Stainless Steel Expanded Metal	18
Flattened Stainless Steel Expanded Metal	19
300 Series - Selection of Stainless Steel Considering	
Physical and Mechanical Properties	20
400 Series - Selection of Stainless Steel Considering	
Physical and Mechanical Properties	22

STAINLESS STEEL ALLOY GENERAL INFORMATION

303MX	25
304, 304L	26
316. 316L	20
317, 317L	28
321	29
347, 348	30
403, 410	31
416, 416MX, 416MF, 416MH, 4MX	33
420	35
430, 430F	37
431	38
440 C	40
Nitronic 50	42
Nitronic 60	42
245 SMO	43
RA 2205	44
AL-6XN	45
ALLOY 20	46
17-4 PH	47
15-5 PH	48
E-BRITE ALLOY	49

HEAT RESISTANT ALLOYS GENERAL INFORMATION

309	51
310	52
330	53
333	54
RA 85H	55
HR120	56
ALLOY 446	58

INDEX

AEROSPACE 4340 V_______59 300M/4340 Mod______60 13-8MO ______61 15-5_____62 BERYLLIUM COPPER C-172 _____63 C63000 NICKLE ALUMINUM BRONZE _____64

NICKEL ALLOYS GENERAL INFORMATION

200	65
276	67
400	69
600	70
601	71
625	73
800	75
800HT	76
825	77

AQUATECH BOAT SHAFTING

AQUATECH 17	79
AQUATECH 19	80
AQUATECH 22 &22 HS	81

DATA

Stainless Steel Pipe Specifications to ASTM	83
Stainless Steel Sheet and Plate to ASTM	84
Stainless Steel Bar Material Specifications	85
Hardness Conversion Table	86
Fractional Inches Converted to Decimal Inches	87
Workability Characteristics	88
Stainless Steel Finishes	90
Corrosion Data	91

ALUMINUM GENERAL INFORMATION

ALUMINUM GENERAL INFORMATION	
Aluminum Sheet & Coil	103
Aluminum Sheet	106
Aluminum Plate	106
Aluminum Round Bar	107
Aluminum Square Bar	108
Aluminum Flat Bar	109
Aluminum Angle Aluminum Structural Channel	110
Aluminum Structural Channel	111
Aluminum Safety Grip Channel	111
Aluminum Structural Tee	112
Aluminum Structural I Beam	112
Aluminum Round Tube	113
Aluminum Square Tube	114
Aluminum Rectangular Tube	115
Aluminum Pipe	116
ALUMINUM FOR TRANSPORTATION	117
ALUMINUM FOR SIGN MANUFACTURING	121

ALUMINUM TECHNICAL DATA

Alloy Designation System	123
Temper Designation System	124
Chemical Composition Limits	126
Sheet, Plate & Coil Mechanical Properties	127
Sheet, Plate & Coil Conversion Properties	130

STAINLESS ROUNDS

TYPES: 303, 304, 304L, 316, 316L, 17-4 PH, 416, 410, 431 420, 431

• Annealed & centreless ground, peeled or smooth turned.

• Available in a wide selection of lengths and grades.

• 316/316L Available in pump shaft quality.

Sizes in Stock			
Size	Est. Wt.	Size	Est. Wt.
in	per Ft.	in	per Ft.
Inches	in Lbs	Inches	in Lbs
¹ /16	0.010	2 ⁹ / ₁₆	17.540
5/ ₆₄	0.016	2 ⁵ /8	18.400
3/00	0.024	2 ¹¹ / ₁₆	19.290
1/8	0.042	2 ³ /4	20.190
5/32	0.065	2 ⁷ / ₈	22.070
^{3/} 16	0.094	215/10	23.040
1/00	0.128	2 ¹⁵ / ₁₆ 3	24.030
1/4 1/4	0.167	3 ¹ / ₈	26.080
9/22	0.214	3 ¹ / ₄	28.210
5/10	0.261	3 ³ /8	30.420
3/8	0.376	31/2	32.710
()	0.511	3 ⁵ / ₈	35.090
1/16 1/2 9/	0.668	331	37.550
	0.845	3 ³ / ₄ 3 ⁷ / ₈	40.010
5/0	1.040	4	42.730
11/10	1.260	41/4	48.230
3/1	1.510	43/2	51.110
13/40	1.760	4 ¹ / ₂	54.080
7/0	2.050	4 ⁵ / ₂	57.121
15 _{/16}	2.350	45/ ₈ 43/ ₄	60.250
1	2.670	47/8	63.460
1 ¹ / ₁₆	3.020	5	66.760
1 ¹ /8	3.380	5 ¹ /4	73.600
13/40	3.770	5 ¹ / ₂	80.770
1 ¹ /4	4.170	5 ⁵ /8	84.490
1 ⁵ /16	4.600	5 ³ /	88.290
1 ³ /•	5.050	6	96.130
17/10	5,520	6 ¹ / ₁₆	98.150
1 ¹ /2	6.010	6 ¹ / ₄	104.30
1 ⁹ /16	6.520	6 ¹ /2	112.80
15/6	7.050	6 ³ /	121.70
1 ¹¹ /16	7.600	7	130.90
1 ³ /4	8.180	71/4	140.40
1 ¹³ / ₁₆	8.770	71/2	150.20
<u>17/8</u>	9.390	7 ³ /4	160.40
1 ¹⁵ / ₁₆	10.020	8	170.90
2	10.680	8 ¹ / ₂	192.90
2 ¹ / ₁₆	11.360	9	216.30
2 ¹ /8	12.060	10	267.00
$\frac{2^{3}}{16}$	12.790	12	384.50
2 ¹ / ₄	13.520	12 ¹ /2	437.50
2 ⁵ / ₁₆	14.280	13	453.20
2 ³ /8	15.060	14	523.40
2 ⁷ / ₁₆	15.870	16	684.00
2 ¹ / ₂	16.690	18	865.00
		20	1079.61

Threaded bars, threaded right or left hand to any desired length are available on order.

STAINLESS FLATS TYPES: 304, 304L, 316, 316L

Stock Lengths: 10' to 20'Available in a wide selection of lengths and grades.

Sizes in Stock			
Size	Est. Wt.	Size	Est. Wt.
in	per Ft.	in	per Ft.
Inches	in Lbs	Inches	in Lbs
1_{8} x 1_{2}	0.213	¹ / ₂ X 1 ¹ / ₂	2.55
3/4 3/4	0.319	2´2´	3.40
1	0.425	2 1/2 2 ¹ /2	4.25
1 ¹ / ₄	0.531	3 ⁻ 4	5.10
1 ¹ /2	0.638	4	6.80
1 ³ / ₄ 2 2 ¹ / ₂	0.744	6	10.20
2	0.850	⁵ / ₈ x ³ / ₄	1.59
2 ¹ / ₂	1.060	1	2.13
3	1.280	1 ¹ / ₄	2.66
<u>4</u>	1.700 0.319	11/2 13/4	<u>3.19</u> 3.72
$\frac{4}{3_{16}}$ x $\frac{1_{2}}{5_{10}}$	0.398	13/4	4.25
5/8 3/4	0.478	2 ⁴ 2 ¹ / ₂	5.31
1	0.638	3	6.38
1 ¹ / ₄	0.797	3 3 ¹ /2	7.44
11/0	0.956	4	8.50
13/4	1.120	5	10.63
2	1.280	5 6	12.75
$2^{1}/_{2}$	1.590	3_{l} , x 1	2.55
1 ³ / ₄ 2 2 ¹ / ₂ 3	1.910	11/.	3.19
4	2.550	$1^{1/4}$ $1^{1/2}$ $1^{3/4}$ 2 $2^{1/2}$	3.83
1_{4} x 1_{2}	0.425	1 ³ / ₄	4.46
3/4	0.638	2	5.10
1 1 ¹ /4	0.850 1.060	2 ¹ / ₂ 3	6.38 7.65
1 ¹ / ₄	1.280	3	8.93
1 ³ /2 13/.	1.490	1 x 2	6.80
1 ³ / ₄ 2	1.700	21/4	7.65
21/2	2.130	2 ¹ / ₂	8.50
3	2.150	3	10.20
3 ¹ / ₂	2.970	<u> </u>	11.90
4	3.400	4	13.60
5	4.250	5 6	17.00
6	5.100	6	20.40
<u> </u>	1.060	8	27.20
³ / ₈ X ³ / ₄	0.956	1 ¹ / ₄ x 2	8.50
1	1.280	$2^{1}/_{2}$	10.63
1 ¹ / ₄	1.590 1.910	3 ² 4	12.75 17.00
1 ¹ / ₂ 2	2.550	1 ¹ / ₂ X 2	10.20
21/2	3.190	<u>11/2 × 2</u> 21/2	12.75
3	3.830	3	15.30
4	5.100	3 ² 4	20.40
5	6.380	1 ³ / ₄ x 2	11.90
6	7.650	$2^{1} \times 2^{1/2}$	17.00
1/2 x 3/4	1.280	3	20.40
1	1.700	4	27.20
1 ¹ / ₄	2.130		

Sizes in Stock

Other sizes not shown can be produced quickly. Longer lengths on inquiry.

STAINLESS SQUARES TYPES: 303, 304, 316L

• Annealed & Cold Drawn, Hot Rolled, Annealed & Pickled.

• Available in a wide selection of lengths and grades.

Sizes in Stock			
Size in Inches	Est. Wt. per Ft. in Lbs	Size in Inches	Est. Wt. per Ft. in Lbs
1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 3/4	0.530 0.120 0.213 0.332 0.478 0.651 0.850 0.932 1.330	$ \begin{array}{r} 1\\ 1^{1}_{/8}\\ 1^{1}_{/4}\\ 1^{1}_{/2}\\ 1^{3}_{/4}\\ \hline 2\\ 2^{1}_{/4}\\ 2^{1}_{/2}\\ 3^{1}_{/2}\\ 4\\ \end{array} $	3.40 3.73 5.31 7.65 10.41 13.60 21.25 25.71 41.65
$\frac{3_{4}}{7_{8}}$	<u> </u>	· · ·	54.40

STAINLESS HEXAGONS

TYPES: 303, 304, 304L, 316L • Available in a wide selection of lengths and grades.

Sizes in Stock			
Size in Inches	Est. Wt. per Ft. in Lbs	Size in Inches	Est. Wt. per Ft. in Lbs
Inches	III Eb3	Inches	11 203
1 _{/2}	0.046	1 ¹ / ₈	3.73
1 _{/8} 3 _{/16}	0.104	1 ³ / ₁₆	4.15
1/ _A	0.184	1 ¹ / ₄	4.60
⁵ /16 11/32	0.288	1 ⁵ / ₁₆	5.07
11/ ₃₂	0.348	1 ³ /8	5.57
	0.414	17/16	6.09
7/ ₁₆	0.564	1 ¹ /2	6.63
1 _{/2}	0.736	1 ⁹ / ₁₆	7.19
⁹ /16	0.932	1 ⁵ /8	7.78
$\frac{5_{18}}{11_{11}}$	1.150	1 ³ / ₄	9.02
¹¹ /16	1.390	1 ¹³ / ₁₆	9.67
'16 3 _{/4} 13 _{/16} 7/	1.660	1 ⁷ /8	10.40
¹³ /16	1.940	2	11.78
7/8	2.250	21/4	14.91
7 _{/8} 15 _{/16}	2.590	2 ¹ / ₄ 2 ¹ / ₂	18.40
1	2.950	3	26.50
1 ¹ / ₁₆	3.320		

STAINLESS ANGLES TYPES: 304, 304L, 316, 316L

- Hot Rolled, Annealed & Pickled
- Stock Length 20'
- Available in a wide selection of lengths.

	Sizes in Stock						
	Size in Inches	Est. Wt. per Ft. in Lbs					
	$1^{1/8}$	0.80					
11/4	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	<u>1.49</u> 1.01 1.48					
11/ ₂	$\begin{array}{ccc} X & 1^{1} /_{2} & {}^{1} /_{8} \\ & 1^{1} /_{2} & {}^{3} /_{16} \\ & 1^{1} /_{2} & {}^{1} /_{4} \end{array}$	1.23 5 1.80 2.34					
2	$\begin{array}{cccc} x & 2 & x & \frac{1}{8} \\ 2 & \frac{3}{16} \\ 2 & \frac{1}{4} \\ 2 & \frac{3}{8} \end{array}$	1.65 5 2.44 3.19 4.70					
21/2	2^{1}_{2} 1_{4} 2^{1}_{2} 3_{8}	6 3.07 4.10 5.90					
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 3.07 4.10 4.90					
$\frac{31_{2}}{4}$	$ \begin{array}{cccc} & & & & & & & & \\ x & 3^{1}{}_{2} & x & & 1^{1}_{4} \\ \hline & 3 & x & & 1^{1}_{4} \\ & 3 & & 3^{1}_{8} \\ & 4 & & 1^{1}_{4} \end{array} $	<u>5.80</u> 5.80 8.50					
5	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	9.80 12 80					
STAINLESS CH			I				

<u>STAINLESS CHANNELS</u> TYPES: 304, 304L, 316, 316L

Stock Lengths: 20 to 24 Ft. random

Sizes in Stock

Size in Inches A B C	Est. Wt. per Ft. in Lbs	Size in Inches A B C	Est. Wt. per Ft. in Lbs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.60 4.19 4.75	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.69 10.43 8.32

STAINLESS BEAMS

TYPE: 304

• Stock Lengths: 20 to 24 Ft. random.

Sizes in Stock							
АВС	Est. Wt. per Ft. in Lbs	АВС	Est. Wt. per Ft. in Lbs				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.60 8.44	5 x 3 x .326 6 x 3.33 x .326	11.49 14.90				

ROUND TUBING STANDARD SIZE (WEIGHT/FT)

TYPES: 304, 316

• Available in Mechanical and Ornamental Specifications

GAUGE WALL THICKNESS	22 .030	20 .035	18 .049	16 .062	14 .083	12 .109	11 .120	9 .148	7 .180	5 .220	¹ / ₄ WALL .250
OUTSIDE DIAMETER											
1/8	.029	.0336									
⁷⁸ ³ /16	.0478	.0572									
1/4	.0664	.0804	.1052	.1284							
5/ ₁₆	.0852	.1039	.1382	.1722							
3/8	.1038	.1271	.1706	.2152	.2588						
7/16		.1506	.2036	.2589							
1/2		.1738	.2360	.3020	.3696						
5/8		.2205	.3014	.3888	.4805						
3 _{/4}		.2673	.3668	.4755	.5913	.7462	.8074				
7/8		.3140	.4323	.5623	.7021	.8917	.9676				
1		.3607	.4977	.6491	.8129	1.0372	1.1278				
1.050		.3794	.5238	.6902	.8652	1.141	1.229				
1 ¹ /8		.4074	.5631	.7359	.9237	1.1827	1.2880				
1 ¹ / ₄		.4542	.6285	.8226	1.0345	1.3283	1.4482				
1 ⁵ /16		.4777	.6615	.8759	1.090	1.417	1.529				
1 ³ /8		.5009	.6939	.9094	1.1453	1.4738	1.6064				
1 ¹ /2		.5476	.7593	.9962	1.2561	1.6193	1.7686				
1 ⁵ /8		.5943	.8248	1.083	1.3669	1.7648	1.9288				
1.660		.6074	.8141	1.117	1.3978	1.822	1.992	2.294			
1 ³ / ₄		.6411	.8902	1.1697	1.4777	1.9103	2.069	2.5322			
1 ⁷ /8		.6878	.9556	1.2565	1.5885	2.0558	2.2492	2.7296			
1.900		.6971	.9687	1.286	1.6107	2.104	2.255	2.743			
2		.7345	1.0210	1.3433	1.6993	2.2014	2.4094	2.9273			
2 ¹ / ₄			1.1518	1.5168	1.9209	2.4924	2.7298	3.3225			
2 ³ /8			1.2175	1.5315	2.0313	2.6380	2.8401	3.5201	4.2197	5.0634	
21/2			1.2827	1.6904	2.1425	2.7834	3.0502	3.7177	4.460	5.357	
2 ⁷ /8				1.9507	2.498	3.220	3.564	4.3104	5.847	6.2382	
3				2.0375	2.5857	3.3655	3.6910	4.5080	5.4212	6.5319	
3 ¹ /8				2.1243	2.6966	3.511	3.8512				
4				2.7317	3.505	4.5296	5.019	6.0886	7.3436	8.8813	10.0125
4 ¹ / ₂				3.0788	3.952	5.1117	5.666	6.8789		10.0563	11.3475
5				3.4259	4.3586	5.6937	6.2542	7.6693	9.2660	11.2311	12.6834

SQUARE AND RECTANGULAR TUBING STANDARD SIZE TYPES: 304, 316

	•										
GAUGE	20	18	16	14	12	11	9	7	1/4WALL	5/ ₁₆	3/8
WALL THICKNESS	.035	.049	.062	.083	.109	.120	.148	.180	.250	.312	.375
OUTSIDE DIMENSION											
1/2 X 1/2	.2205	.3014	.3887	.4707							
5/0 X 5/8	.2808	.3868	.4950	.6117	.6851						
$3_{I_A} \times 3_{I_A}$.3403	.4671	.6055	.7528	.9502	1.1278					
7/ ₈ x 7/ ₈	.3998	.5504	.7160	.8929	1.1355	1.2322					
1 X 1		.6337	.8264	1.0350	1.3206	1.4360					
1 ¹ / ₈ X 1 ¹ / ₈	.5186	.7170	.9369	1.1761	1.5061	1.6402					
$11/_4 \times 11/_4$.5783	.8003	1.0474	1.3172	1.6914	1.8442	2.2181				
1 ¹ / ₂ X 1 ¹ / ₂		.9668	1.2685	1.5995	2.104	2.2550	2.7213	3.3214			
1^{3}_{4} X 1^{3}_{4} 2 X 2		1.1518	1.5168	1.9209	2.4924	2.7298	3.225	4.0166	0.0074		
		1.3001	1.7103	2.1637	2.8029	3.0678	3.7277	4.4555	6.0071		
$2^{1}/_{4}$ X $2^{1}/_{4}$ $2^{1}/_{2}$ X $2^{1}/_{2}$		1.4667	1.9315	2.4461	3.1738	3.4762	4.2309	5.0674 5.6794			
2 2		1.6333	2.1525 2.5945	2.7283 3.2927	3.5444 4.2856	3.8842 4.7002	4.7341 5.7405	6.9034	8 0532		
3 X 3 3 ¹ / ₂ X 3 ¹ / ₂			2.5945	3.857	4.2850	4.7002 5.516	6.7405	8.127	8.9532 11.3475		
4 X 4			5.055	4.360	5.490	6.260	7.6693	9.270	12.6843	14.620	17.040
5 x 5				4.000	5.450	0.200	1.0035	11.550	15.070	20.234	23.995
6 X 6								13.560	18.199	24.491	29.094
7 X 7								16.253	23.129	28.747	34.193
8 X 8								19.235	26.529	33.004	39.293
GAUGE	20	18	16	14	12	11	9	7	1/4WALL		3/8
WALL THICKNESS	.035	.049	.062	.083	.109	.120	.148	.180	.250	^{5/} 16 .312	.375
OUTSIDE DIMENSION											
1/ ₈ X1											
1/2X3/4	.2808	.3838	.4950								
¹ / ₂ X1	.3403	.4671	.6055	.7529							
1/2X11/4	.3998	.5504	.7160	.8946							
1/2X11/2	.4593	.6337	.8264	1.0350							
1/2X2	.5783	.8003	1.0474	1.3172							
3/ ₄ X1	.3998	.5504	.7160	.8940							
3/ ₄ X11/ ₄	.4593	.6337	.8264	1.0350							
³ / ₄ X1 ¹ / ₂	.5188	.7170	.9369	1.1761							
3/ ₄ X2	.6378	.8836	1.1580	1.4584							
7/8X11/2	.5486	.7587	.9923	1.2468							
1X1 ¹ /2		.8003	1.0474	1.3172	1.6914	1.8840					
1X2		.9668	1.2684	1.5993	2.0620	2.2522					
1X3		1.3000	1.7103	2.1637	2.8029	3.0682	3.7277	4.4554			
1 ¹ / ₄ X1 ³ / ₄		.9668	1.2685	1.5995	2.104	2.2550	2.7213	3.3214			
11/4X21/2		1.2167	1.5999	2.0226	2.6176	2.864	3.5201	4.2197			
1 ¹ / ₂ X2		1.335	1.4895	1.8817	2.4326	2.6602					
1 ¹ / ₂ X2 ¹ / ₂			1.7105	2.1639	2.8032	3.0682	3.7277	4.4554			
1 ¹ / ₂ X3			1.9315	1.4461	3.1738	3.4762	4.6105	5.793			
1 ¹ / ₂ X4			2.3735	3.0105	3.9474	4.4018	5.2934	6.3824			
1 ³ / ₄ X3		1.5500	2.0420	2.5872	3.3591	3.680	4.5080	5.4213			
1 ³ / ₄ X4			2.3846	3.029	3.9711	4.4282	5.3252	6.4207			
2X3		1.6333	2.1525	2.7283	3.5444	3.8842	4.5351	5.6794	7.3425		
2X4			2.5945	3.2927	4.2865	4.7002	5.7405	6.9034	8.9325		
2X5				4.1390	5.397	5.924	7.250	8.739	11.3475		
2X6				4.40	5.6937	6.313	7.6693	9.20	12.6834		
3X4				3.857	5.027	5.516	6.747	8.127	11.3475		
3X6						6.390		9.020	12.6834		
3X7								11.550	15.070	20.204	22.005
4X6								11.550	15.070	20.204	23.995
4X8								13.560	18.199	24.491	29.094
5X7								13.560	18.199	24.491	29.094
6X8								16.253	23.129	28.747	34.193
6X10								19.235	26.529	33.004	39.293

ROUND TUBING SIZE TOLERANCES

O.D. INCHES		WALL THICKNESS	<u>O.D. +/-</u>
¹ /2" to 1" INCL.	OVER	.025 to .065 .065 to .120	.006
1" to 1 ¹ /2" INCL.	0.1211	.025 to .065	.006
1 ¹ /2" to 2" INCL.	OVER	.065 to .120 .025 to .049	.010 .010
	OVER OVER	.049 to .083 .083 to .148	.011 .012
2" to 21/2" INCL.		.0351 to .065	.012
	OVER OVER	.065 to .109 .109 to .165	.014
21/2" to 31/2" INCL.	OVER	.065 to .165 .165 to .220	.020 .025
31/2" to 5" INCL.	OVER	.063 to .165 .165 to .220	.020 .025

SQUARE & RECTANGULAR TUBING

SIZE TOLERANCES

OUTSIDE DIAMETER

<u>+/- INCH</u> 015

020

¹/2" to 1¹/4" INCL. 1¹/4" to 2¹/2" INCL. 2¹/2" to 5¹/2" INCL.

TOLERANCE GUIDELINES

Manufacturing tolerances may be specified to conform to ASTM-A 500 specification. Unless otherwise specified, all manufacturing tolerances will be suitable for standard structural applications.

Chemical and Mechanical Properties

Chemical and mechanical properties of tubing shall conform to the properties of the starting material specification.

Corner Radius (R)

The outside corner radius of a rectangular or square section is generally 2 x's the material thickness (t) Maximum tolerance 3t.

Wall Thickness (t)

The wall thickness at any point shall not exceed $+/-12^{1}/2\%$ of the nominal wall.

Squareness of Sides (x°)

Adjacent sides may deviate from 90° by a tolerance of +/- 2° maximum.

Lengths

Cutting Tolerance Exact Cut Min. R/L

Cut to size +1/4, -0" Cut to min. size +6" (est.), -

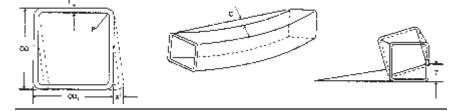
0" Random Lengths 15' - 24', standard lengths 20'

Twist (T)

Maximum twist.

Specified Dimensions of Longest Side, inch's.

over 21/2" to	over 4" to	over 6" to	over 8
4" incl.	6" incl.	8" incl.	
.075	.087	.100	.112


Straightness (C)

The commercial tolerance for straightness is 1/8" times the total number of feet of total length divided by 5.

.125 x total length 5

Polishing

Polishing is an abrading operation employed for the removal of grinding lines, scratches, pits, tool marks and other surface defects that adversely affect the appearance of a tube. On Square and rectangular tubing, polishing is done in a longitudinal direction. Tube corners are not polished. Polished grit finishes available are P180 &P240.

STAINLESS WELDED PIPE & SEAMLESS PIPE

TYPES: 304, 316, 309, 310, 330 Stock lengths 20 to 24 ft. randoms.

Nominal Pipe Size $\frac{1_{1/2}}{3_{1/4}}$ 1 $1_{1/4}$ $1_{1/2}$ 2 3 $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ $3_{1/2}$ $\frac{1}{1_{1/2}}$ \frac	.540 .690 .880 1.120 1.290 1.620 3.060	O.D. in Inches 6chedule 5 .840 1.050 1.315 1.660 1.900	O.D. in Inches	Wall Thickness
$ \begin{array}{r} $.540 .690 .880 1.120 1.290 1.620 3.060	.840 1.050 1.315 1.660	.920	
$ \begin{array}{r} $.690 .880 1.120 1.290 1.620 3.060	1.050 1.315 1.660	.920	
$ \begin{array}{c} 1^{1_{/2}} \\ 2 \\ 3 \\ 3^{1_{/2}} \\ 4 \\ 5 \\ 6 \end{array} $	3.510	2.375 3.500 4.000	1.185 1.530 1.770 2.245 3.334 3.834	.065 .065 .065 .065 .065 .083 .083
$ \begin{array}{c} 1^{1_{/2}} \\ 2 \\ 3 \\ 3^{1_{/2}} \\ 4 \\ 5 \\ 6 \end{array} $	S	chedule 10)	
10 12	1.42 2.10 2.66 4.37 5.02 5.67 7.84 9.38 13.40 18.65 24.16	1.315 1.900 2.375 3.500 4.000 4.500 5.563 6.625 8.625 8.625 10.750 12.750	1.097 1.682 2.157 3.260 3.760 4.260 5.295 6.357 8.329 10.420 12.390	.109 .109 .109 .120 .120 .120 .134 .134 .134 .148 .165 .180
	S	chedule 40)	
$ \begin{array}{c} 1_{1/8} \\ 1_{1/4} \\ 3_{1/8} \\ 1_{1/2} \\ 3_{1/4} \\ 1 \\ 1_{1/4} \\ 1_{1/2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 3 \\ $.250 .430 .570 .860 1.140 1.700 2.290 2.740 3.700	.405 .540 .675 <u>1.050</u> 1.315 1.660 1.900 2.375	.269 .364 .493 .824 1.049 1.380 1.610 2.067	068 .088 .091 .109 .113 .133 .140 .145 .154
$ \begin{array}{r} 2^{1}_{l_{2}} \\ 3 \\ 3^{1}_{l_{2}} \\ 4 \\ 5 \\ 6 \\ 8 \\ 10 \\ 12 \\ 12 \end{array} $	5.850 7.650 9.190 10.890 14.750 19.150	2.875 3.500 4.000 4.500 5.563 6.625 8.625	2.469 3.068 3.548 4.026 5.047 6.065 7.981	.203 .216 .226 .237 .258 .280

STAINLESS WELDED PIPE & SEAMLESS PIPE TYPES: 304, 304L, 316, 316L

	Siz	zes in Stoc	k					
Nominal Pipe Size	Weight per Ft. in Lbs	O.D. in Inches	O.D. in Inches	Wall Thickness				
Schedule 80								
$\begin{array}{c} 1/8 \\ 1/4 \\ 3/8 \\ 1/2 \\ 3/4 \\ 1 \\ 1^{1/4} \\ 1^{1/2} \\ 2 \\ 2^{1/2} \\ 3 \\ 3^{1/2} \\ 4 \\ 5 \\ 6 \end{array}$.320 .540 .750 1.100 1.490 2.190 3.030 3.670 5.070 7.660 10.250 12.500 14.980 20.780 28.570	.405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625	.215 .302 .423 .546 .742 .957 1.278 1.500 1.939 2.323 2.900 3.364 3.826 4.813 5.761	.095 .119 .126 .147 .154 .179 .191 .200 .218 .276 .300 .318 .337 .375 .432				
8 10 12 14 16	43.390 64.330 88.510 106.100 136.500	8.625 10.750 12.750 14.000 15.000	7.625 9.564 11.376 12.500 15.000	.500 .594 .688 .750 .843				

ASA Alloys also stock a wide range of screwed and butt weld fittings.

- Unions
- Couplings
- Nipples
- Tees
- Elbows
- Flanges

STAINLESS STEEL SHEETS TYPES: 304, 304L, 316, 316L, 309, 310 Other grades available upon request. 2B, #4 and XL blends finishes.

	Sizes in St	ock	
Gauge and Sizes in Stock	Weight per Piece	Est. Wt. per Sq. Ft. in Lbs.	Est. Wt. per Sq. In. in Lbs.
10ga x 36 x 96 36 x 120 48 x 96 48 x 120 48 x 144 60 x 120	142 177 189 236 283 295	5.905	.04101
60 x 144 <u>11ga x 36 x 96</u> 36 x 120 48 x 96	354 126 158 168	5.25	.03645
48 x 120 48 x 144 60 x 120 60 x 144	210 252 263 315	4.504	00400
12ga x 36 x 96 36 x 120 48 x 96 48 x 120 48 x 144	<u>110</u> 138 147 184 220	4.594	.03190_
60 x 120 60 x 144 14ga x 36 x 96 36 x 120	230 275 79 98	3.281	.02278
48 x 96 48 x 120 48 x 144 60 x 120 60 x 144	105 131 157 164 197		
16ga x 36 x 96 36 x 120 48 x 96 48 x 120	63 79 84 105	2.625	.01823
48 x 144 60 x 120 60 x 144 18ga x 36 x 96 36 x 120	126 131 158 50	2.100	.01460
36 x 120 48 x 96 48 x 120 48 x 144 60 x 120	63 67 84 101 105		
60 x 144 <u>20 ga x 36 x 96</u> <u>36 x 120</u> 48 x 96	126 <u>38</u> 47 50	1.580	.01095
48 x 120 48 x 144 22ga x 36 x 96 36 x 120 48 x 96	63 76 <u>31</u> 39 42	1.313	.00911
48 x 120 48 x 144 24ga x 36 x 96 36 x 120	53 63 <u>26</u> 32	1.050	.00731
48 x 96 48 x 120 48 x 144	34 42 51		

STAINLESS STEEL COILS

TYPE: 304, 304L, 316, 316L Finish: 304 - 2B and #4 Polish One Side. 316 - 2B

	Sizes in Stock						
Gauge	Thickness in inches	Width in inches	Est. Wt. per Sq. Ft. in Lbs.				
10	.140	36, 48, 60	5.905				
11	.125	36, 48, 60	5.250				
12	.109	36, 48, 60	4.594				
14	.078	36, 48, 60	3.281				
16	.0625	36, 48, 60	2.625				
18	.050	36, 48, 60	2.100				
20	.0375	36, 48	1.580				
22	.0312	36, 48	1.313				
24	.025	36, 48	1.050				

STAINLESS STEEL PLATES

TYPES: 304L, 304H, 316L, 317L, 2205, 321, 309, 310, 254, 904L Other grades available upon request. Hot Rolled, Annealed and Pickled.

Sizes in Stock						
Thickness	Est. Wt. per Sq. Ft. in Lbs.	Est. Wt. per Sq. In. in Lbs.				
3/16	8.579	.05958				
1/4	11.162	.07751				
5/16	13.746	.09546				
3/8	16.496	.11456				
<u>7/16</u>	19.080	.13250				
	21.663	.15044				
	24.246	.16838				
5/8 3/4 	26.831 32.123 37.291 39.875	.18633 .22308 .25897 .27690				
1 1 1 1/8 1 1/4	42.665 47.903 53.226	.29628 .33266 .36963				
<u>1 1/2</u>	63.871	.44355				
1 3/4	74.516	.51747				
2	85.161	.59140				
2 1/4	95.807	.66533				
2 1/2	106.452	.73925				
<u>2 3/4</u>	117.097	<u>.81317</u>				
3	127.742	.88710				

STAINLESS DIAMOND FLOOR PLATES

TYPE: 304

Hot Rolled, Annealed and Pickled.

Sizes in Stock								
Thickne Sizes in		Est. Wt. per Sq. Ft. in Lbs.						
1/8	36 x96, 120, 144	6.150						
1/8	48 x96, 120, 144	6.150						
3/16	48 x96, 120, 144	8.700						
1/4	48 x96, 120, 144	11.250						

STAINLESS STEEL PERFORATED METAL

	Sizes i	n Stock	
Hole Size	On Centre Dimension	Thickness	Width x Length
1/16	1/8	22 GA	36 x 96
3/32	3/16	22 GA	36 x 96
1/8	3/16	16 GA	36 x 96
3/16	1/4	16 GA	<u>36 x 96</u>
3/16	1/4	22 GA	36 x 96
1/4	5/16	20 GA	36 x 96
1/4	3/8	11 GA	36 x 96
1/4	3/8	16 GA	36 x 96
1/4	3/8	20 GA	36 x 96
3/8	9/16	16 GA	36 x 96
1/2	3/4	16 GA	36 x 96
1/8	3/16	18 GA	48 x 120

The pattern sizes shown are available for immediate delivery.

STANDARD STAINLESS STEEL EXPANDED METAL

	Lbs. per 100	Standard 9	Sheet Size	Design Siz	ze (Inches)	Opening Si	ize (Inches)	Strand	Size (Inches)	Overall Thickness	Open Area	Normal Stock
Ctude	•			-			i í í	,				Olock
Style	S.F	SWD	LWD	SWD	LWD	SWO	LWO	Width	Thickness	(Inches)	%	
1/2" -		8	4									
#20	50	4	8	0.5	1.2	0.437	0.937	0.08	0.037	0.164	70	4 x 8
1/2" -		8	4									
#18	67	4	8	0.5	1.2	0.437	0.937	0.08	0.05	0.164	70	4 x 8
1/2" -		8	4									
#16	84	4	8&10	0.5	1.2	0.437	0.937	0.08	0.062	0.164	70	4 x 8
1/2" -		8	4									
#13	187	4	8&10	0.5	1.2	0.325	0.875	0.119	0.093	0.225	65	4 x 8
3/4" -		8	4									
#16	60	4	8	0.923	2	0.812	1.75	0.106	0.062	0.202	83	4 x 8
3/4" -		8	4									
#13	91	4	8&10	0.923	2	0.75	1.687	1.07	0.093	0.202	80	4 x 8
3/4" -		8	4									
#9(10)	193	4	8&10	0.923	2	0.687	1.562	0.15	0.14	0.308	67	4 x 8
1'1/2" -		8	4									
#16	41	4	8	1.33	3	1.25	2.75	0.106	0.062	0.222	85	4 x 8
1'1/2" -		8	4									
#13	62	4	8	1.33	3	1.25	2.625	0.106	0.093	0.222	83	4 x 8
1'1/2"		8	4									
#9(10)	137	4	8&10	1.33	3	1.125	2.5	0.155	0.14	0.28	77	4 x 8

FLATTENED STAINLESS STEEL EXPANDED METAL

Style	Lbs. per 100 S.F	Standard SWD	Sheet Size	Design (Inch SWD		Opening S SWO	ize (Inches) LWO	Strand S Width	ize (Inches) Thickness	Overall Thickness (Inches)	Open Area %	Normal Stock
1/2" - #20F	48	8 4	4 8	0.5	1.26	0.312	1	0.91	0.033	0.033	60	4 x 8
1/2" - #18F	65	8 4	4 8	0.5	1.26	0.312	1	0.91	0.04	0.04	60	4 x 8
1/2" - #16F	81	8 4	4 8&10	0.5	1.26	0.312	1	0.91	0.05	0.05	60	4 x 8
1/2" - #13F	178	8 4	4 8&10	0.5	1.26	0.24	0.915	0.132	0.08	0.08	57	4 x 8
3/4" - #16F	57	8 4	4 8	0.923	2.1	0.75	1.812	0.118	0.05	0.05	75	4 x 8
3/4" - #13F	86	8 4	4 8&10	0.923	2.1	0.625	1.75	0.12	0.07	0.07	75	4 x 8
3/4" - #9(10)F	183	8 4	4 8&10	0.923	2.1	0.562	1.687	0.155	0.119	0.119	61	4 x 8
1'1/2" - #16F	39	8 4	4 8&10	1.33	3.15	1.062	2.75	0.119	0.05	0.05	80	4 x 8
1'1/2" - #13F	59	8 4	4 8	1.33	3.15	1	2.625	0.121	0.079	0.079	80	4 x 8
1'1/2" #9(10)F	131	8 4	4 8	1.33	3.15	0.937	2.625	0.165	0.119	0.119	75	4 x 8

Above material conforms to military specification M1L-S-46044A (MR) Type 2

Stainless Steel Styles also available in -3/16 -5/16 -5/8 -1

MESHES - Styles stocked in type 304 normally.

	ATLAS/AISI TYPE		303	304	304L
Analysis - %:	Carbon		0.15	0.08	0.030
	Manganese		2	2.0	2.0
Chemistry	Phosphorous		0.2	0.045	0.045
value is	Sulphur		15 Min	0.030	0.030
maximum	Silicon		1	1.0	1.0
except where	Chromium		17-19	18-20	18-20
range or	Nickel		8-10	8-10.5	8-12
minimum is shown	Other		-	-	-
		psi	35000	35000	33000
	(0.2% offset)	MPa	241	241	228
	Ultimate Strength	psi	90000	84000	81000
		MPa	621	579	558
	Elongation % in 2'	' (100 mm)	50	55	55
Mechanical		Brinell BHN	160	149	149
Properties	Hardness	Rockwell B	84	80	80
(Annealed):		ftIbs.	92	135	135
	Impact Charpy	J	146	182	182
	Creep Strength-1%	psi			
		at 1000°F	-	17300	17300
	flow in 10,000 hrs. at 1000°F (540°C)				
		MPa at 540°C	-	119	119
	Modulus of Elasticity in	psi	28.0x10 ⁶	28.0x10 ⁶	28.0x10 ⁶
	tension	MPa	1.9x10⁵	1.9x10⁵	1.9x10⁵
Electrical Properties	Electrical Resistivity- Microhm - Cm at 68°F (20°C)		72	72	72
(Annealed):	Magnetic Permeability a 200H	t	1.02	1.02	1.02
Heat	Maximum Operating Temperature	°F	1400	1600	1600
Resistance:	Intermittent Service	°C	760	871	871
	Continuous Service	°F	1600	1700	1700
		°C	871	926	926
	Expansion-				
Thermal	(In./In./°F x 10- ⁶)	32°-212°F	9.6	9.6	9.6
Expansion:	(cm/cm/°C x 10- 6)	0°-100°C	17.3	17.3	17.3
		32°-1200°F	10.4	10.4	10.4
		0°-650°C	18.7	18.7	18.7
	Conductivity-				
Thermal	(B.T.U./ft.²/hr./°F/ft.)	at 212° F	9.4	9.4	9.4
Conductivity:	(J/m/S/°C/m)	at 100°C	16.3	16.3	16.3
		at 932°F	12.4	12.4	12.4
		at 500° C	21.5	21.5	21.5

Considering Physical and Mechanical Properties

Considering Physical and Mechanical Properties

309	309S	310	310S	316	316L	317	317L	321	330	347&348
0.20	0.08	0.25	0.08	0.08	0.03	0.08	0.03	0.08	0.08	0.08
2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.040	0.045
0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
1.0	1.0	1.5	1.5	1.0	1.0	1.0	1.0	1.0	.075-1.0	1.0
22-24	22-24	24-26	24-26	16-18	16-18	18-20	18-20	17-19	17-19	17-19
12-15	12-15	19-22	19-22	10-14	10-14	11-15	11-15	9-12	34-37	9-13
-	-	-	-	Mo 2-3	Mo 2-3	Mo 3-4	Mo 3-4	Ti 5xC Min	-	*
45000	45000	45000	45000	42000	39000	40000	40000	35000	42000	40000
310	310	310	310	290	269	276	276	241	290	276
95000	95000	95000	95000	84000	81000	90000	90000	90000	85000	95000
655	655	655	655	579	558	621	621	621	586	655
45	45	45	45	50	50	45	45	45	45	45
170	170	170	170	149	149	163	163	160	150	160
85	85	85	85	80	80	85	85	84	80	85
135	135	110	110	135	135	135	135	135	240	135
182	182	165	165	182	182	182	182	182	325	182
15900	15900	17500	17500	24500	24500	24000	24000	18000	-	19300
110	110	121	121	169	169	165	165	124		133
29.0x10 ⁶	29.0x10 ⁶	29.0x10 ⁶	29.0x10 ⁶	28.0x10 ⁶	- 28.0x10 ⁶	28.0x10 ⁶				
						-		-		-
2.0x10 ⁵	2.0x10 ⁵	2.0x10 ⁵	2.0x10 ⁵	1.9x10 ⁵	1.9x10 ⁵					
78	78	78	78	74	74	74	74	72	102	73
1.02	1.02	1.01	1.01	1.02	1.02	1.02	1.02	1.02	1.01	1.02
1850	1850	1900	1900	1600	1600	1600	1600	1600	2100	1600
1008	1008	1036	1036	871	871	871	871	871	1149	871
1950	1950	2100	2100	1700	1700	1700	1700	1700	2100	1700
1061	1063	1149	1149	926	926	926	926	926	1149	926
									0.0	
8.3	8.3 14.9	8.0 14.4	8.0 14.4	8.9	8.9 16.0	8.9	8.9	9.3 16.7	9.3	9.3
	14.9		9.7	16.0	10.1	16.0	16.0 10.3	16.7	16.7 10.1	16.7 10.6
10.0		9.7	-	10.1	-	10.3		-		
18.0	18.0	17.5	17.5	18.2	18.2	18.5	18.5	19.3	18.2	19.1
8.0	8.0	8.0	8.0	9.4	9.4	9.4	9.4	9.3	7.5	9.3
13.8	13.8	13.8	13.8	16.3	16.3	16.3	16.3	16.1	12.9	16.1
10.8	10.8	10.8	10.8	12.4	12.4	12.4	12.4	12.8	11.6	12.8
18.7	18.7	18.7	18.7	21.5	21.5	21.5	21.5	22.2	20.1	22.2

400 Series - Selection of Stainless Steel

					I .	
Atlas/Aisi Type			403	409	410	416*
	Carbon		0.15	0.08	0.15	0.15
Analysis - %	Manganese		1.0 max	1	1	1.25
Chemistry	Phoshorous		0.040	0.040	0.040	0.060
value is	Sulphur		0.030	0.030	0.030	0.15 Max*
maximum	Silicon		0.5	1.0	1.0	1.0
except where	Chromium		11.5-13	10.5-11.75	11.5-13.5	12-14
range or	Nickel		-	-	-	-
minium is	Other			Ti		Мо
shown.			-	6 x C Min	-	0.6
	<u>) (0</u> ,		10000	0.75 max	45000	(Optional)
	Yield Strength	psi	40000	35000	45000	83000++
	(0.2% offset)	Mpa	276	241	310	572†
	Ultimate Strength	psi	75000	65000	70000	105000††
		MPa	517	448	483	724††
	Elongation% in					
	2" (100 min)		35	25	25	20
Mechanical	Hardness Brinell BH		153	150	150	225
Properties	Rockwell E		82	75	80	97
(Annealed):	Impact Charpy	ftIbs.	110	16	110	21
		J	165	21	165	28
	Creep Strength-1%	psi				
	flow in 10,000 hrs	at 1000°F	12000	10500	12000	9000
	at 1000°F (540°C)					
	MPa	at 540°C	83	72	83	62
	Modlus of Elasticity	psi	29.0x10 ⁶	29.0x10 ⁶	29.0x10 ⁶	29.0x10 ⁶
	in tension	MPa	2.0x10 ⁵	2.0x10⁵	2.0x10⁵	2.0x10 ⁵
	Electrical Resistivity					
Electrical	-Microhm-Cm					
Properties	at 68°F (20°C)		57	59	57	57
(Annealed):	Magnetic Permeability					
	at 200H		-	-	-	-
	Maximum Operating					
	Temperature-	°F	1500	1475	1500	1400
Heat Resistance:	Intermittent Services	°C	815	774	815	760
	Continuous Sevice	°F	1300	1400	1300	1250
		°C	704	760	704	677
	Expansion-					
Thermal	(in./in./°Fx10- ⁶)	32°-212°F	5.5	6.5	5.5	5.5
Expansion:	(cm/cm/°Cx10- ⁶)	0°-100°C	9.9	11.7	9.9	9.9
		32°-1200°F	6.5	7.2	6.5	6.5
		0°-650°C	11.7	13	11.7	11.7
	Conductivity					
T h	(B.T.U./ft./hr/°F/ft)	at 212°F	14.4	14.4	14.4	14.4
Thermal Conductivity:	(J/m'/S/°C/m)	at 100°C	24.9	24.9	24.9	24.9
conductivity:	<u>,</u> ,	at 932°F	16.6	16.6	16.6	16.6
		at 500°C	28.7	28.7	28.7	28.7
	ATLAS/AISI TYPE	416MX	416MF	416MN	4MX	
	*typical sulphur analysis	0.33	0.20	0.29	0.40†	
	† or as required	•	•	•	•	
	typical cold finished					

Considering Physical and Mechanical Properties

properties for optimum machinability

420	430 & 430F	431	440C	445	S1	5500	S	17400
0.15 Min	0.12	0.2	0.95-1.20	0.2		0.07		0.07
1	1.25	1	1	1.5		1		1
0.040	0.040	0.040	0.040	0.040	0	.040	C	.040
0.030	0.15	0.030	0.030	0.030	0	.030	C	.030
1.0	1.0	1.0	1.0	1.0		1.0		1.0
12-14	16-18	15-17	16-18	23-27	14.	0-15.5	15.	5-17.5
-	-	1.25-2.50	-	0.25		5-5.5		0-5.0
					Cu	Cb + Ta	Cu	Cb + Ta
			Мо		+2.5-	0.15 -	3.0-	0.15-
-	*	-	0.75	-	4.5 0.45		5.0	0.45
50000	50000	95000	65000	50000	13	80000	13	30000
345	345	655	448	345	ĩ	896		896
95000	75000	125000	110000	80000	16	0000	16	60000
655	517	862	758	552	1	103	1	1103
25	25	20	14	20		15		15
192	163	262	223	153	;	330		330
92	85	103	97	82	3	5 Rc	3	5 Rc
31	21	37	4	16		30		30
42	28	50	6	22		34		34
11400	8600	12000	-	6100		-		-
79	59	83	-	42		-		-
29.0x10 ⁶		.0x10 ⁶	29.0x10 ⁶					
2.0x10 ⁵	2.0	0x10 ⁵	2.	0x10 ⁵				
	<u> </u>	72	<u> </u>	67		77		00
55	60	12	60	67		77		80
-	-	-	-	-		-		-
-	1600	1700	-	2150		-		-
	871	976	_	1176		-		-
	1500	1600		2000		-		-
-	815	871	-	1093		-		-
	010	0/1		1000				
5.7	5.8	5.6	5.6	5.4		6.0		6.0
10.3	10.4	10.1	10.1	9.7		10.8		10.8
6.8	6.6	6.5	-	6.4		6.9		7
12.2	11.9	117	-	11.5		12.4		12.6
	-			-	12.4			
14.4	15.1	11.7	14	12.1	10.3			10.6
14.4	15.1		24.2	21.6				13.1
2/ 0	26.1				17.8			
24.9 16.8	26.1 15.2	20.2						
24.9 16.8 29	26.1 15.2 26.3	20.2 13.2 22.8	24.2 14.2 24.6	14.1 24.4	1	17.8 13.1 22.6		13.1 22.6

Considering Physical and Mechanical Properties

303 MX (UNS S30300)

This grade represents the optimum in machinability among the 300 Series stainless steels. It is primarily used when parts production involves extensive machining in automatic screw machines. The sulphur addition which is responsible for the improved machining and galling characteristics of Type 303 MX marginally lowers its corrosion resistance properties to slightly below that of Type 304.

Machinability Rating (B1212) 78%

Corrosion Resistance: Excellent resistance to mildly corrosive atmospheres... slightly less than Type 304 due to sulphur addition.

Heat Resistance: Good oxidation resistance in intermittent service to 1600°F. Continuous use in 800-1575°F range not recommended but often performs well in temperatures fluctuating above and below this range. **Heat Treatment:** Annealing - heat to 1850-2050°F. Cool rapidly. These grades cannot be hardened by thermal treatment.

Welding: Not generally recommended but, if unavoidable, use Type 308, 310 or 312 electrodes. Welds must be annealed for maximum corrosion resistance.

Typical applications:

Nuts and bolts. Bushings. Shafts. Aircraft fittings. Highway sign studs. Electrical switchgear components. Gears. Fluid handling fittings. Thermocouple fittings.

		С	Mn	Р	S	Si	Cr	Ni	Se
A.I.S.I Analysis	303MX	15 max	2.0 max	.20 max	.15 Min	1.0 max	17.0 to 19.0	8.0 to 10.0	
	303Se	15 max	2.0 max	.20 max	.06 max	1.0 max	17.0 to 19.0	8.0 to 10.0	.15 Min
				Ha	ardness	Impact			
Typical Mechanical	Yeild Strength 2%Offset psi	Ultimate Strength psi	Elongation % in 2' '	Rb	BHN	Charpy ftlbs.	Modulus o	f Elasticity ir - psi	1 Tension
Properties Annealed	350,000	90,000	50	84	160	92		28.0 x 10 ⁶	
	Creep Str Flow in 10,				Electrical Resistivity- Microhm-	Thermal	icient of Expansion	Conducti	rmal vity BTU- ./°F/Ft.
Other Properties	1000		H-Annea		Cm at 68°F		x 10 ⁶⁾ 32°- I2°F	at 212°F	at 932°F
			1.02		72	9	9.6	9.4	12.4

26 304, 304L (UNS \$30400, UNS \$30403

This is the most versatile, and one of the most widely applied of the 300 Series stainless steels. It has excellent forming and welding characteristics. The carefully controlled analysis of Type 304 enables it to be deep drawn more severely than Types 301 and 302 without intermediate heat softening ... a characteristic that has made this grade dominant in the manufacture of drawn stainless parts such as sinks, and saucepans. It is readily brake or roll formed into a variety of other parts for application in the industrial, architectural, and transportation fields.

Type 304 also has outstanding welding characteristics. Post-weld annealing is not required to restore the excellent performance of this grade in a wide range of mildly corrosive conditions.

Type 304L does not require post-weld annealing and finds extensive use in heavy gauge components, where freedom from carbide weld precipitation is often required.

Corrosion Resistance: Excellent ... exceeding that of Type 302 in a wide variety of corrosive media including hot petroleum products, steam combustion gasses.

Heat Resistance: Good oxidation resistance in intermittent service to 1600°F and In continuous service to 1700°F. Continuous use of 304 in 800-1575°F range not recommended but often performs well in temperatures fluctuating above and below this range. Type 304L is more resistant to carbide precipitation and can be used in the above temperature range.

Heat Treatment: Annealing - heat to 1850-2050°F and cool rapidly. These grades cannot be hardened by thermal treatment.

Welding: Excellent. All standard methods. Use type 308 rods or electrodes. Heavy welded sections in Type 304 may require post-weld annealing for maximum corrosion resistance. This is not required if Type 304L is used.

Typical Applications:

The list of applications for this general purpose grade is very extensive and includes: Beer barrels Bulk milk coolers Food processing equipment Fire extinguisher parts Wine storage tanks Tube skelp Chemical containers Heat exchangers Winding wire

		С	Mn	Р	S	si	Cr	Ni
A.I.S.I Analysis	304	.08 max	2.0 max	.045 max	.030 max	1.0 max	18.0 to 20.0	8.0 to 10.5
	304L	.030 max	2.0 max	.045 max	.030 max	1.0 max	18.0 to 20.0	8.0 to 12.0
Typical	Yeild Strength	Ultimate Strength	Elongation	Hardne	ss	Impact Charpy	Modul Elastic	
Mechanical Properties	.2% offset psi	psi	% in 2' '	Rb	BHN	ftlbs.	Tension - psi	
Annealed	35,000	84,000	55	80	149	135	28.0 :	< 10 ⁶
	Creep Strengt		Magnetic Permeability	Electrical Resistivity -	Th	icient Of ermal ansion	Ther Condu BTU/Ft.²/I	ctivity
Other Properties	ni 10,000 hirs. psi	in 10,000 hrs. at 1000°F psi		Microhm- Cm at 68°F	(In/In	°F x10 ⁶) 212°F	at 212°F	at 932°F
	17,30	00	1.02	72		9.6	9.4 12.4	

316, 316L (UNS \$31600, UNS \$31603)

Type 316 and Type 317 (described on the following page) are molybdenum bearing grades. This addition, slightly higher in Type 317, gives these grades better overall corrosion resistance properties than types 301 and 304 . . . and higher creep strength at elevated temperatures. Type 316 gives useful service at room temperature in sulphuric acid of concentration lower than 15% and higher than 85%. It also resists chloride attack and is often selected for use in marine atmospheres.

Type 316L with its .03 maximum carbon content is used in applications where it is not possible to anneal after welding and where maximum corrosion resistance is required

Corrosion Resistance: Good resistance to a wider range of chemicals than Type 304. Highly resistant to the complex sulphur compounds used in Pulp & Paper processing. Also resists attack of marine and corrosive industrial atmospheres.

Heat Resistance: Good oxidation resistance in intermittent service to 1600°F and in continuous service to 1700°F. Continuous use of 316 In 800° -1575° F range not recommended but often performs well in temperatures fluctuating above and below this range. Type 316L is more resistant to carbide precipitation and can be used in the above temperature range.

Heat Treatment: Annealing - heat to 1850-2050°F and cool rapidly. These grades cannot be hardened by thermal treatment.

Welding: Good characteristics suited to all standard methods. Use Type 316Cb, 316L or 309Cb tiller rods or electrodes depending on application. Welded sections in Type 316 require postweld annealing for maximum corrosion resistance. This is not required if Type 316L is used.

Typical applications:

Pulp & paper equipment. Heat exchangers. Dyeing equipment. Photographic developing equipment. Propeller shafts. Fittings Exterior architectural components in marine coastal areas.

		С	Mn	Р	S	Si	Cr	Ni	Mo	
A.I.S.I Analysis	316	.08 max	2.0 max	.045 max	.030 max	1.0 max	16.0 to 18.0	10.0 to 14.0	2.0 to 3.0	
	316L	.03 max	2.0 max	.045 max	.030 max	1.0 max	16.0 to 18.0	10.0 to 14.0	2.0 to 3.0	
Typical Mechanical	Yeild Strength .2%	Ultimate Strength	Elongation % in 2"	n Hardness		Impact Charpy	Modulus Of Elasticity in Tension -		Tension - psi	
Properties Annealed	offset psi	psi	% in 2	Rb	BHN	ftIbs.				
	42,000	84,000	50	80	149	135	28.0 x 10 ⁶			
Flow in		Creep Strength 1% Flow in 10,000 hrs. at 1000°F psi		Electrical Resistivity - Microhm- Cm at	Therma (In/In°l	fficient Of al Expansion F x10 ⁶) 32°- 212°F		ermal Conduc TU/Ft.²/Hr./°F		
			Annealed	68°F			at 212°F	at 9	32°F	
	24,500 1.02 74 8.9		9.4	1:	2.4					

317, 317L (UNS \$31700, UNS \$31703)

This grade, with its molybdenum content slightly higher than Type 316 is the most corrosion resistant of the 300 series alloys and possesses the highest tensile and creep strength properties at elevated temperatures. It is designed for use in pharmaceutical, chemical and pulp and paper processing equipment to reduce product contamination to a minimum.

Type 317L with its .03 maximum carbon content is used in applications where it is not possible to anneal after welding and where maximum corrosion resistance is required

Corrosion Resistance: Improved resistance over Type 316. Often successfully applied where Type 316 has given only moderate performance.

Heat Resistance: Good oxidation resistance in intermittent service to 166°F and in continuous service to 1700°F. Continuous use of 317 in 800°-1575°F range is not recommended but often performs well in temperatures fluctuating above and below this range. Type 317L is more resistant to carbide precipitation and can be used in the above temperature range.

Heat Treatment: Annealing-heat to 1850-2050°F and cool rapidly for maximum corrosion resistance. These grades cannot be hardened by any form of thermal treatment.

Welding" Good welding characteristics suited to all standard methods. Use 317L or 309Cb filler rods or electrodes. Welded sections in Type 317 require post weld annealing for maximum corrosion resistance.

Typical Applications:

Sodium sulphate evaporators Starch size containers Insulation strapping Acetic acid distillation columns and condensers Pulp and paper machinery Ink manufacturing and dyeing equipment

		С	Mn	Р	S	Si	Cr	Ni	Мо	
A.I.S.I Analysis	317	.08 max	2.0 max	.045 max	.030 max	1.0 max	18.0 to 20.0	11.0 to 15.0	3.0 to 4.0	
	317L	.03 max	2.0 max	.045 max	.030 max	1.0 max	18.0 to 20.0	11.0 to 15.0	3.0 to 4.0	
Typical Mechanical	Yeild Strength	Ultimate Strength	Elongation % in 2"	Ha	ardness	Impact Charpy	Modulus	of Elasticity in Te	nsion - psi	
Properties Annealed	2%Offset psi	psi	% in 2	Rb	BHN	ftIbs.				
	40,000	90,000	45	85	163	135		28.0 x 10 ⁶		
Other Properties	Creep Stre Flow in 10,0 1000°	000 hrs. at	Magne Permeability H-Annea	/ at 200	Electrical Resistivity- Microhm- Cm at	Expansi	ent of Thermal ion (In/In/°F x 32°-212°F		ductivity BTU- r./°F/Ft.	
							-	at 212°F	at 932°F	
	24,0	00	1.02		74		8.9	9.4	12.4	

321 (UNS S32100)

Type 321 is basic 1818 steel stabilized by a titanium addition. It is not sensitive to intergranular corrosion when heated within the carbide precipitation range of 800-1600°F and can be used in this temperature range in corrosive environments.

Corrosive Resistance: Excellent. Equivalent to Types 302 or 304 in the annealed condition. . and superior if a weldment in these grades has not been post-weld annealed or if the application involves service in the 800-1600°F range.

Heat Resistance: Good oxidation resistance in intermittent service to 1600°F and in continuous service to 1700°F. Performs as well as any of the heat resisting stainless steels in the 800-1600°F range where serious corrosive conditions are present.

Heat Treatment: annealing – Heat to 1750-2050°F and cool rapidly for maximum corrosion resistance. Stabilizing – Heat to 1550-1650°F for 1 hour per inch of thickness and air cool. Stress Relief – Heat to 1300°F for 1 to 2 hours and air cool.

This grade cannot be hardened by thermal treatment

Welding: Good characteristics suited to all standard methods. Use Type 347 filler rod or electrodes.

Typical applications:

Aircraft exhaust manifolds. Expansion joints Bellows Furnace parts Heating element tubing

A.I.S.I		С	Mn	Р	S	Si	Cr	Ni	Ti
Analysis	.08 max	2.0 max	.045 max	.030 max	1.0 max	1.0 max	17.0 to 19.0	9.0 to 12.0	5xC Min
Typical Mechanical Properties Annealed	Yeild Strength Ultimate 2% Strength		Elongation H		Hardness		Modulus of Elas Tension - p		
	Offset psi	psi	70 III 2	Rb	BHN	ftlbs.		reneren por	
	350000	90000	45	84	160	135	28.0 x 10 ⁶		6
Other	Creep Strength 1% Flow in 10,000 hrs.		Magnetic Permeability at 200		Electrical Resistivity- Microhm-	Coefficient of Thermal Expansion		Condu	rmal uctivity 'U- ./°F/Ft.
Other Properties	at 100	at 1000°F psi		H-Annealed		(In/In/°F 32°-21		at 212°F	at 932°F
	18,	000	1.02		72	9.3		9.3	12.8

347, 348 (UNS S34700, UNS S34800

These grades are chromium-nickel stainless steels containing columbium and tantalum. The columbium serves to produce a stabilized type of stainless steel which is immune to chromium carbide precipitation. The grades are thus recommended for parts fabricated by welding which cannot be subsequently annealed or for parts which must operate in service between 800- 1600° F. Type 348 has the lower tantalum and cobalt contents of the two steels, making it suitable for use where the steel is subjected to nuclear irradiation.

Corrosion Resistance: Excellent. Equivalent to Type 304 and superior to Types 302 or 304 where unannealed weldments are involved or service temperatures in the 800 to 1600°F range. Where service is both corrosive and at elevated temperatures, these grades are superior to Type 321.

Heat Resistance: Good oxidation resistance in intermittent service to 1600°F and in continuous service to 1700°F. Best suited to service in the 800 to 1600°F range.

Heat Treatment: Annealing - Heat to 1850-2050°F and cool rapidly for maximum corrosion resistance.

Stabilizing - Heat to 1500 to 1650°F for 1 hour per inch of thickness, then air cool. Stress Relief After fabrication, hold for 1 to 2 hours at 1300°F and air cool.

Welding: Good characteristics suited to all standard methods. Use Types 347 or 348 filler rod or electrodes. Post-weld annealing is not required.

Typical applications:

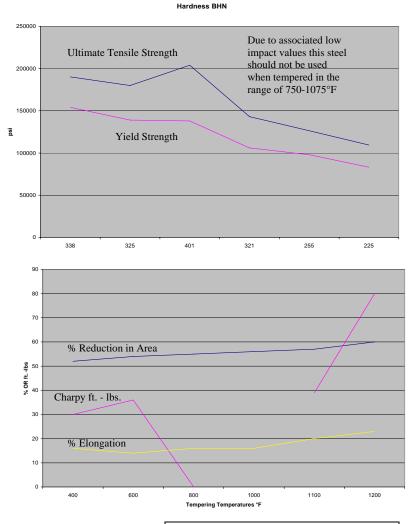
Radioactive systems. Jet engine parts. Furnace pans. Welding rods. Heat exchangers.

Typical Mechanical Properties Annealed	Yeild Strength .2%	Ultimate Strength	Elongation % in 2"	F	lardness	Impact Charpy ft	Elas	lulus Of sticity in sion - psi	
	offset psi	psi	111 2	Rb	BHN	lbs.			
	40,000	95,000	45	85 160		135	28.	28.0 x 10 ⁶	
Other Properties	Creep Strength 1% Flow in 10,000 hrs. at 1000°F psi	at H-Annealed		Electrical Resistivity - Microhm- Cm at 68°F	Coefficient Of Thermal Expansion (In/In°F x10 ⁶) 32°- 212°F	Thermal Conductivity BTU/Ft.?/Hr./°F/Ft.			
	19.300			1.02 7473		9.3 at 212°F		at 932°F	
	19,500 1.02				0.0	9.3		12.8	

This is the basic grade in the group of 400 Series alloys that can be hardened by heat treatment. It, and its companion grade, Type 403, contain a minimum of 11.5 per cent chromium ... just sufficient to give them corrosion resistance properties. Both achieve maximum corrosion resistance when they have been hardened and then polished. While Type 403 is designed for a specific field of applications, Type 410 is a general purpose grade often supplied in the hardened, but still machinable condition for applications where high strength and moderate heat and corrosion resistance are required.

Corrosion Resistance: Resists dry atmosphere, fresh water, mild alkalies and acids, steam and hot gasses. Must be hardened for maximum heat and corrosion resistance, Less corrosion resistant than 300 Series grades and ferritic 400 Series alloys such as Type 430. **Heat Resistance:** Good resistance to scaling in intermittent service to 1500°F and in continuous service to 1300°F.

Heat Treatment: Hardened by heating to 1700-1850°F, quenching in oil or air and tempering to obtain a wide variety of hardness values and mechanical properties as indicated in the accompanying table and graph. NOTE: THE TEMPERING RANGE 750 to 1075°F SHOULD BE AVOIDED.


Welding: Readily welded by all standard methods ... but a pre-heat of 300-S00'F and post-weld annealing treatment is required to reduce the possibility of cracking. Use Type 410 welding rod if post hardening and tempering is involved. If parts are to be used in the "as welded" condition, a ductile joint can be achieved by using Type 308 or 309 filler rod.

Typical applications:

Bolts, nuts, screws. Bushings. Pump pans and shafts. Petroleum fractioning towers. Mine ladder rungs. Valves.

A.I.S.I	С	Mn	Р		S	Si		Cr	
Analysis	.15 max	1.0 max	.040 max	.030 max		1.0 max		11.5 to 13.5	
-					dness				
	Yeild			Har	aness				
Typical Mechanical Properties Annealed	Strength .2% Offset psi	Ultimate Strength psi	Elongation % in 2"	Rb	BHN	Impact Charpy ft Ibs.		Modulus of Elasticity in Tension - psi	
	45,000	70,000	25	80	150	110		29.0 x 10 ⁶	
Other	Creep Strength 1% Flow in 10,000 hrs. at 1000°F psi		Coefficien Therma Expansio (In/In/°F x	l n	Resist Micro	Electrical Resistivity- Microhm-		al Conductivity Ft.²/Hr./°F/Ft.	
Properties			32°-212°F		Cm at	68°F	at 212°F	at 932°F	
	12,	000	5.5		57		14.4	16.6	

TYPICAL MECHANICAL PROPERTIES OF 1" SECTION TYPE 410 OIL HARDENED FROM 1750°F AND TEMPERED AT VARIOUS TEMPERING TEMPERATURES FOR 1 HOUR.

	Tempering Temperature °F								
	400	600	800	1000	1100	1200			
Ultimate Tensile Strength psi	190200	180000	204000	143000	126400	109500			
.2% Yeild Strength	154000	139000	138000	106000	98000	83200			
Elongation %	16	14	16	16	20	23			
Reduction of Area %	52	54	55	56	57	60			
Hardness BHN	338	325	401	321	255	225			
Charpy impact Ftlbs.	30	36	Due to associated low impact values this steel should not be used when tempered in the range of 750- 1075'F		hould not be used 39				

416, 416MX, 416 MF, 416MH, 4MX (UNS S41600)

TYPE 416 SUPER FREE MACHINING GRADE FAMILY

TYPE 416MX – This grade with a typical sulphur content of .33, possess excellent machinability, provides a fine surface finish on the machined parts has uniform hardness in !he "as supplied" condition and can be hardened to 35Rc minimum ... characteristics that make this grade particularly suited for use in automatic screw machining operations. Machinability Rating (612.12) 90%

TYPE 416MH - A modification of Type 416MX, with a typical sulphur content of .29, combining the capacity of being heat treated to 40Rc minimum with excellent machinability. Machinability Rating (61212) 85%

TYPE 416MF - A second modification 01 Type 416MX having a typical sulphur content of .20 and combining formability and response to heat treatment with good machinability. Machinability Rating (BI212) 80%

TYPE 4MX - Developed to provide the ultimate in free machining, this grade is custom melted to meet specific application requirements. The Alias Metallurgical Department should be contacted for detailed information. Machinability Rating (61212) 95%

Corrosion Resistance: Good resistance to dry atmospheres, fresh water and mild alkalise and acids, but less resistant than the 300 Series grades. Maximum resistance in the hardened and tempered condition.

Heat Resistance: Fair resistance to scaling in intermittent service to 1400°F and to 1250°F in continuous service.

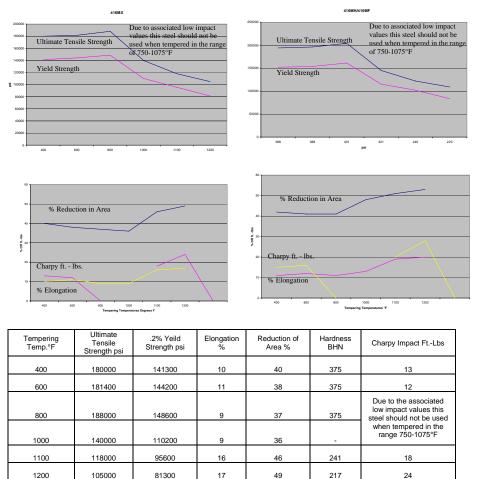
Heat Treatment: Annealing - Heal to 1500-1650°F hour per inch of thickness, Cool at 50°F per hour maximum to 1100°F and air cool.

Hardening – Hardened by heating to 1700-1850°F, quenching in oil, and tempering to suit the mechanical requirements. See accompanying table and chart. NOTE: THE TEMPERING RANGE 750-1075°F SHOULD BE AVOIDED.

Welding: If welding is necessary ... use Type 410 low hydrogen electrodes. Pre-heat to 400-600°F. Follow immediately with annealing or re-hardening ... or a stress relief at 1200-1250°F.

Typical applications: Valve parts Motor shafts Bolt,s nuts, studs, gears. Automatic screw machined parts Washing machines

- ypiour / in	alyoid all	а і төрөн	00 101 7 10		110110		goladoo
A.I.S.I Analysis	С	Mn	Ρ	S	Si	Cr	Мо
416MX	0.15 max	1.25 max	0.06 max	0.33*	1.0 max	12.0 to 14.0	0.60 max ††
416MF	0.15 max	1.25 max	0.06 max	0.20*	1.0 max	12.0 to 14.0	0.60 max ††
416MH	0.15 max	1.25 max	0.06 max	0.29*	1.0 max	12.0 to 14.0	0.60 max ††
4MX	0.15 max	1.25 max	0.06 max	0.40†	1.0 max	12.0 to 14.0	0.60 max ††
A.I.S.I 416	0.15 max	1.25 max	0.06 max	0.15 min	1.0 max	12.0 to 14.0	0.60 max ††


Typical Analysis and Properties for Atlas Type 416 Free Machining Grades

	Yeild			Hardness				Modulus of	
Typical Mechanical Properties Annealed	Strength .2% Offset psi	Ultimate Strength psi	Elongation % in 2"	Rb	BHN	Impact Cl Ibs		Elasticity in Tension - psi	
	83,000	105,000	20	97	225	21		29.0 x 10 ⁶	
Other	Creep Strength 1% Flow in 10,000 hrs. at 1000°F psi		Coefficient of Thermal Expansion (In/In/°F x 10 ⁶⁷ 32°- 212°F		Res Microl	ectrical sistivity- hm-Cm at		ll Conductivity Ft.²/Hr./°F/Ft.	
Properties					e e	58°F	at 212°F	at 932°F	
	9,000		5.5		57		14.4	16.6	

* Typical Sulfur Analysis † or as required ††optional

34 416, 416MX, 416MF, 416MH, 4MX (Continued)

Typical mechanical properties of 1" section - Type $416MX\,/\,416MF$ oil hardened from $1750^\circ F$ and tempered at various tempering temperatures for 1 hour.

Tempering Temp.°F	Ultimate Tensile Strength psi	.2% Yeild Strength psi	Elongation %	Reduction of Area %	Hardness BHN	Charpy Impact FtLbs
400	194000	152000	11	42	388	15
600	196000	153700	12	41	388	16
800	204000	161300	11	41	401	Due to the associated low impact values this steel should not be
1000	145000	115300	13	48	321	tempered in the range 750- 1075°F
1100	122000	102000	19	51	240	20
1200	109000	83600	20	53	223	28

420 (UNS S42000)

This grade has good ductility in the annealed condition but is capable of being hardened up to 50 Rc ... the highest hardness of the 12 per cent chromium grades. Best corrosion resistance for this grade III achieved when the metal is hardened, surface ground, or polished.

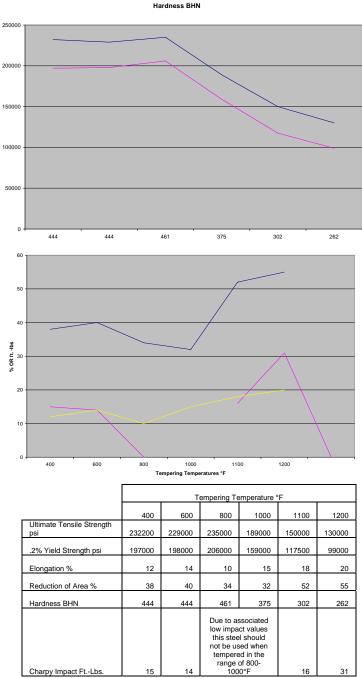
Corrosion Resistance: Good resistance in the hardened condition to the atmosphere, foods, fresh water, and mild alkalies or acids. Corrosion resistance is very low in the annealed condition.

Heat Resistance: Not recommended for use in temperatures above 700°F.

Heat Treatment: Annealing - Heat to 1550-1650°F, slow furnace cool to 1100°F and then air cool. Sub-Critical Anneal - Heat to1350·1450°F and air cool. Hardening - Heat to 1800-1900°F and air or oil cool. Oil quenching is necessary for heavy sections. Temper to obtain a wide variety of hardness values and mechanical properties as indicated in the accompanying table and graph. NOTE: THE TEMPERING RANGE 800 TO 1100°F SHOULD BE AVOIDED.

Welding: Pre-Heat at 300-600°F and post-heat at 1125-1400°F. Type 420 coaled welding rods recommended for high strength joints. Types 309 and 310 can be used if ductile weld required.

Typical Applications:


Cutlery Knife blades Surgical instruments Needle valves Shear blades

A.I.S.I	С	Mn	Р		S		Si	Cr
Analysis	.15 max	1.0 max	.040 max		030 nax	1.0 max		12.0 to 14.0
				-				
	Yeild			Har	dness			
Typical Mechanical Properties Annealed	Strength .2% Offset psi	Ultimate Strength psi	Elongation % in 2"	Rb	BHN	Impact Charpy ft Ibs.		Modulus of Elasticity in Tension - psi
	50,000	95,000	25	92	192	31		29.0 x 10 ⁶
	·							
Other	Creep Strength 1% Flow in 10,000 hrs. at 1000°F psi		Coefficient of Thermal Expansion (In/In/°F x 10 ⁶⁾		n Micro			al Conductivity Ft.²/Hr./°F/Ft.
Properties	arroo	o i poi	32°-212°F		Cm at	68°F	at 212°F	at 932°F
	11,	400	5.7		55		14.4	16.8

420 (Continued)

psi

Typical mechanical properties of 1" section Type 420 oil hardened from 1750°F and tempered at various tempering temperatures for 1 hour.

430, 430F (UNS \$43020)

Type 430 is a straight chromium, non-hardenable grade combining good corrosion resistance and formability characteristics with useful mechanical properties. Its ability to resist nitric acid attack permits its use in specific chemical applications but automotive trim represents its largest field' of applications.

Type 430F is the free-machining version 01 this grade designed for use in parts produced in automatic screw machines.

AISI Type 434 is the molybdenum bearing version of Type 430 and has the same useful combination of properties. Its molybdenum addition improves corrosion resistance particularly to road salt attack in automotive trim applications.

AISI Type 436 is another version of 430. It contains columbrium, as well as the molybdenum addition, to improve the surface appearance of stretched and drawn parts.

Corrosion Resistance: Good resistance to a wide variety of corrosive media including nitric acid and some organic acids. It attains its maximum corrosion resistance when in the highly polished or buffed condition.

Heat Resistance: Resists oxidation in intermittent service up to 1600°F and to 1500°F in continuous service. This grade may become brittle at room temperature after prolonged heating in the 750-100°F range. This can be eliminated by annealing.

Heat Treatment: Annealing – Heat to 1500 to 1550° F, hold for ½ hour per inch of thickness, slow furnace cool to 1100° F and then quickly air cool.

Sub-critical Anneal – Heat to 1400-1500°F and then air cool. This grade is not hardenable by thermal treatment.

Welding: If welding is necessary ... preheat at 300-400°F. Embrittlement in the weld metal and heat affected zone can be relieved by a postanneal but grain refinement will not occur. Use type 430,308 or 310 filler rod.

Typical applications:

Automotive trim Lashing wire Element supports Stove trim rings Chimney liners

		С	Mn	Р		S		Si	Cr	Мо
A.I.S.I Analysis	430	.12 max	1.0 max	.040 max		030 nax		1.0 max	16.0 to 18.0	
	430F	.12 max	1.25 max	.040 max	.15	5 Min		1.0 max	16.0 to 18.0	.60 max Optional
	Trainel Yeild Ultimate Flaggeting Hardness Impact									
Typical Mechanical Properties Annealed	Streng	th .2%	Strength psi	Elongation % in 2"	Rb	BHN	Cha	arpy ft Ibs.		of Elasticity ion - psi
, unicalida	50,0	000	75,000	25	85	163		21	29.0	x 10 ⁶
Other			1% Flow at 1000°F	Coefficient Therma Expansio (In/In/°F x	l n	Electr Resisti Microl Cm	vity- nm-		ermal Condu TU-Ft.²/Hr./°	
Properties		P		32°-212°		68°	F	at 212°F	at 9	32°F
		8,600	1	5.8		60		15.1	15	5.2

431 (UNS S43100)

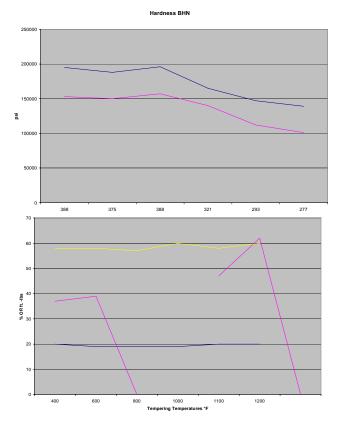
38

This heat treatable, nickel bearing grade has the best corrosion resistance properties of all the straight chromium types. It has excellent tensile and torque strength, and good toughness . . . making it ideally suited to shafting and bolt applications. Because of its high yield strength, this grade is not recommended for use in operations such as cold heading, bending, deep drawing or spinning.

Corrosion Resistance: Excellent resistance to a wide variety of corrosive media. Good resistance to salt water in northern waters but less resistant than Type 316 in tropical waters.

Heat Resistance: Resists scaling in intermittent service to $1700^{\circ}F$ and continuous service to $1600^{\circ}F$

Heat Treatment: Annealing – Heat to 150-1225°Ffor 12 to 24 hours and air cool. Hardening – hardened by heating to 1800-1900°F, quenching in oil and tempering to suit mechanical requirements. See accompanying table and chart. NOTE: THE TEMPERING RANGE 800 TO 1100°F SHOULD BE AVOIDED.


Welding: A pre-heat of 500°F is recommended prior to welding. Type 410 filler rod can be used, but Types 308,309 or 310 will provide more ductile welds. Post-weld anneal at 1150-1225°F.

Typical applications: Nut and bolts Propeller shafting Beater bars Marine hardware

	С	Mn	Р	S	Si	Cr	Ni
A.I.S.I Analysis	.20 max	1.0 max	.040 max	.15 max	0.03 max	15.0 to 17.0	1.25 to 2.50
	Ultimate		E 1 <i>i</i>	Har	dness	Impact	Modulus of
Typical Mechanical Properties Annealed	Yeild Strength .2% Offset psi psi	Strength psi	Elongation % in 2 ' '	Rb	BHN	Charpy ft Ibs.	Elasticity in Tension - psi
	95,000	125,000	20	103	262	37	29.0 x 10 ⁶
	Creep Strength 1% Flow in		t of Thermal n (In/In/°F x	n/°F x Misrohm Cm at 68%		Thermal Co BTU-Ft.²/I	
Other Properties	10,000 hrs. at 1000°F psi		2°-212°F			at 212°F	at 932°F
	12,000	5	5.6		72	11.7	13.2

431 (Continued)

Typical mechanical properties of 1" section Type 431 oil hardened from 1800° F and tempered at various tempering temperatures for 1 hour.

		Tempering Temperature °F					
	400	600	800	1000	1100	1200	
Ultimate Tensile Strength psi	195000	188000	196000	165000	147000	139000	
.2% Yeild Strength	153000	150000	157000	140000	112000	101000	
Elongation %	20	19	19	19	20	20	
Reduction of Area %	58	58	57	60	58	60	
Hardness BHN	388	375	388	321	293	277	
Charpy impact Ftlbs.	37	39	Due to associa values this stee used when terr range of 750-1	el should not be pered in the	47	62	

440C (UNS S44004)

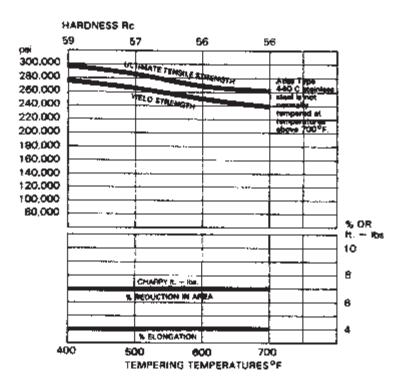
This grade is capable of attaining, after heat treatment, the highest strength and wear resistant properties of all the stainless alloys. Its relatively high carbon content is responsible for these strength wear characteristics which make Type 440C particularly suited to such applications as ball bearings and valve parts

Corrosion Resistance: Good resistance to the atmosphere, fresh water, foods, alkalies and mild acids when in the hardened, tempered and passivated condition.

Heat Resistance: Not recommended for use above 700°F.

Heat Treatment: Hardened by heating to 1850-1950°F, cooling in oil and tempering to suit mechanical conditions as indicated in the accompanying table and graph. Annealing: Heat to 1550-1650°F and slow cool. Sub Critical Anneal: heat to 1350-1450°F and air cool. NOTE: TEMPERING ABOVE 700°F IS TO BE AVOIDED.

Welding: If welding is necessary preheat at 500°F and follow with a full anneal. Types 420, 309 and 310 filler rods can be used following this pre-heat and post-annealing procedure.


Typical Applications:

High grade cutlery. Surgical tools. Bearings and races.

	С	Mn	Р	S	Si	Cr	Ni
A.I.S.I Analysis	.95 to 1.20	1.0 max	.040 max	.030 max	1.0 max	16.0 to 18.0	.75 max
		Ultimate		Har	dness	Impact	Modulus of
Typical Mechanical Properties Annealed	Yeild Strength .2% Offset psi	Strength psi	Elongation % in 2"	Rb	BHN	Charpy ft lbs.	Elasticity in Tension - psi
	65,000	110,000	14	97	223	4	29.0 x 10 ⁶
	Creep Strength 1% Flow in		Coefficient of Thermal Expansion (In/In/°F x 10 ⁶⁾ 32°-212°F		Resistivity-	Thermal Co BTU-Ft.²/I	
Other Properties	10,000 hrs. at 1000°F psi				Microhm-Cm at 68°F		at 932°F
		ŧ	5.6		60	14.0	14.2

TYPICAL MECHANICAL PROPERTIES OF 1" SECTION TYPE 440C OIL HARDENED FROM 1800°F AND TEMPERED AT VARIOUS TEMPERATURES FOR 1 HOUR.

NITRONIC 50 (S20910)

42

Nitronic 50 is a nitrogen strengthened austenitic stainless that provides a combination of corrosion resistance and strength. Corrosion resistance greater than that of 316 and 316L plus approximately twice the yield strength. Nitronic 50 has very good mechanical properties at both elevated and subzero temperatures. Nitronic 50 is nonhardenable by heat treatment and is nonmagnetic.

Chemical Composition (nominal analysis)				
Carbon, max.	0.06%			
Manganese, max.	4.0-6.0			
Phosphorus, max.	0.04			
Sulfur, max.	0.08			
Silicon, max.	1.00			
Chromium, max.	20.5-23.5			
Nickel, max.	11.5-13.5			
Molybdenum, max.	1.5-3.0			
Others	N .20/.40, Cb .10/.30, V .10/.30			

NITRONIC 60 (S21800)

Nitronic 60 has excellent galling resistance and corrosion resistance comparable to 304 plus approximately twice the yield-strength. Metal to metal abrasive wear is also good. Nitronic 60 is non-hardenable by heat treatment and is non-magnetic.

Chemical Composition (nominal analysis)				
Carbon, max.	0.10%			
Manganese, max.	7.0-9.0			
Silicon, max.	3.5-4.5			
Chromium, max.	16.0-18.0			
Nickel, max.	8.0-9.0			
Others	N .20/.40, Cb .10/.30, V .10/.30			

254 SMO is an austenitic stainless steel designed for maximum resistance to pitting and crevice corrosion. 254 SMO has excellent impact toughness, workability and weldability in addition to being highly resistant to chloride stress corrosion cracking. this alloy is 50% stronger than 300 series austenitic stainless steels. Applications: Seawater handling systems, pulp mill bleach systems, tall oil distillation columns and equipment, chemical processing equipment, food processing equipment, desalination equipment, flue gas desulphurization scrubbers, oil and gas production equipment.

Chemical Composition, wt. pct.					
Element	Wrought Products	Castings			
Carbon	0.020 max	0.025			
Chromium	19.5 - 20.5	19.5 - 20.5			
Nickel	17.5 - 18.5	17.5 - 19.5			
Molybdenum	6.0 -6.5	6.0 -7.0			
Nitrogen	0.18 - 0.22	0.180 - 0.240			
Copper	0.50 - 1.00	0.50 - 1.00			
Sulphur	0.010 max	0.010 max			
Phosphorus	0.030 max	0.045 max			
Silicon	0.80 max	1.oo max			
Manganese	1.00 max	1.20 max			
Iron	balance	balance			

RA 2205 (UNS S31803, UNS S32205) Duplex Stainless

RA2205 is an austenitic-ferritic stainless steel containing about 40-50% ferrite in the annealed condition. The high chromium, molybdenum and nitrogen contents provide corrosion resistance superior to 316L or 317L stainless in most environments. The desian strength of RA2205 is significantly higher, often permitting lighter wall construction. RA b2205 has good notch impact toughness down to -40°F, and is fabricated by established duplex welding procedures.

Applications: Chemical process vessels, piping and heat exchangers. Pulp mill digesters, bleach washers, chip prestreaming vessels. Food processing equipment. Oil feild piping and heat exchangers.

Machining: Because of its high strength, RA 2205 is generally more difficult to machine than conventional austenitic stainless. It is relatively easier to machine duplex stainless with high speed steel, rather than cemented carbide tooling.

Welding: When welding RA2205 the aim is to obtain fusion and heat affected zones having the same high corrosion resistance and impact strength asthe base metal. This is achieved by control of heat input and interpass temperature and by limiting total time for the HAZ to be in the 1300-1800°F range.

Chemical Composition, wt. pct.				
Chromium Nickel Molybdenum Carbon Nitrogen Manganese Silicon Phosphorus Sulphur	22.0 - 23.0 4.50 - 6.50 2.50 - 3.50 0.030 max 0.14 - 0.20 2.0 max 1.0 max 0.030 max 0.020 max balance			
Iron	balance			

The AL-6XN alloy (UNS N08367) Is the most corrosion resistant austenlllc stainless alloy produced by Allegheny Ludlum Corporation at this tme. The alloy is resistant to a broad range of very corrosive environments and is readily available from stock in a wide range of product forms, including thick plate that is suitable for multi-pass welding during field fabrication. The high strength and corrosion resistance of the AL-6XN alloy make it a better choice than the conventional duple~ stainless steels and a cost effective alternate to more expensive nickel base alloys in applications where excellent formability, weldability, strength and corrosion resistance are essential. It Is also a viable alternative to less expensive alloys, such as Type 316, that do not have the strength required for certain applications. The AL-6XN alloy is a low carbon, high purity, nitrogen bearing "super-austenitic" stainless alloy. The alloy represents the highest levels of chromium, nickel and molybdenum available in the austenitic class of stainless alloys.

The high nickel and molybdenum contents provide excellent resistance to chloride stress corrosion cracking. Copper (Cu) has been intentionally kept to a residual level for improved performance in seawater and to minimize the precipitation of deleterious secondary phases. The high alloy composition of the AL-6XN alloy resists crevice corrosion and pitting in oxidizing chloride solutions to a degree previously achieved only by nickel-base alloys and titanium. AL-6XN alloy is well suited for such applications as:

- Chemical process tanks and pipelines
 - Process systems for offshore oil and gas platforms
 - Condensers. heat exchangers and piping containing seawater or crude oil
 - Filter washers, vats and press rolls in pulp bleaching plants
 - Power plant flue gas scrubbe, environments
 - Tall oil distillation columns and pecking
 - Reverse osmosis desalination equipment and pumps
 - Service water piping systems for nuclear power plants

AL-6XN alloy offers the following distinct advantages:

- **Corrosion Resistance** The intrinsic corrosion resistance of the AL-6XN alloy in both acidic and alkaline environments provides protection against metallic contamination of process streams and rapid degradation of components made of the alloy.
- **Cost Effectiveness** The AL-6XN alloy is a viable alternative to non-metallic materials that provide high levels of corrosion resistance but are costly to install and

maintain. AL·6XN alloy is significantly less costly than most nickel-base alloys.

- Workability The toughness and ductility of the AL-6XN alloy provide for relative ease of fabrication. The formability and weldability of the AL-6XN alloy are much better than that of high alloy ferritc stainless steels that demonstrable comparable resistance to corrosion
- As-Welded Properties The low carbon and high nitrogen contents minimize the precipitation of carbides and secondary phases that can occur during welding so that aswelded assemblies can be placed in service, provided that a suitable overmatched filler metal is used and the assembly is properly cleaned.
- Wide Range of Product Forms AL·6XN alloy is readily available in a wide range of product forms, such as lube, pipe, sheet, plate, bar, billet and forgings. Components such as pumps, valves, fittings, fasteners and castings are also available.

Chemical Composition

The typical and specified chemical compositions of AL-6XN alloy are presented in Table 1. The chromium, nickel and molybdenum contents are significantly higher in the AL-6XN alloy than in the standard Type :104L, 316L and 317L grades. The alloy has been registered with the Society of Automotive Engineers (SAE) with the designation UNS N08367 and is included in nine different standards in the American Society for Testing and Materials (ASTM) annual book 01 standards. ASTM has classified AL·6XN alloy with the nonferrous alloys in the "B" specification because the alloy contains slightly less than 50% iron. The alloy is listed with an "N" in the Unified Number System (UNS) for the same reason. The low carbon content of AL-6XN alloy distinguishes it as an "L" grade, providing high resistance to intergranular corrosion in the as welded condition.

Ohamiaal	Compositi	Composition, Wt.%				
Chemical Element	Typial Al-6XN Alloy	UNS N08367				
С	0.02	0.03 max				
Mn	0.04	2.00 max				
Р	0.025	0.040 max				
S	0.002	0.030 max				
Si	0.4	1.00 max				
Cr	20.5	2.00/22.00				
Ni	24	23.50/25.50				
Mo	6.3	6.00/7.00				
Ni	0.22	0.18/0.25				
Cu	0.1	0.75 max				
Fe	Balance	Balance				

Table 1-Chemical Composition

46

ALLOY 20 (UNS N08020)

Features

- Excellent resistance to hot sulfuric acid
- Resistant to intergranular corrosion in the aswelded condition
- Chloride stress corrosion cracking resistance

Applications

- Flue gas scrubbing systems
- Sulfuric acid pickling tanks, racks, and heating coils
- Phosphate coating drums and racks
- Heat exchangers
- Bubble caps
- Process piping
- Mixing tanks
- Chemical and petroleum process equipment

Chemical Composition %

Iron

Min.	Max
32.50	35.00
19.00	21.00
-	0.06
2.00	3.00
3.00	4.00
-	2.00
-	0.035
-	0.035
-	1.00
8 x C	1.00
	32.50 19.00 - 2.00 3.00 - - - - -

Remainder

General

Alloy 20 stainless is the alloy designed specifically to withstand sulfuric acid. Its nickel, chromium, molybdenum and copper levels all provide excellent corrosion resistance. At 33% nickel, Alloy 20 has practical immunity to chloride stress corrosion cracking. This alloy is often chosen to solve SCC problems which may occur with 316 stainless. Restricted carbon plus columbium stabilization permits welded fabrications to be used in corrosive environments, normally without post-weld heat treatment. Alloy 20 stainless finds extensive use processing pharmaceuticals, food, plastics, explosives and synthetic fibers.

Mechanical Properties

Minimum Room Temperature Properties:

Tensile Strength, psi	0.2% Yeild Strength, psi	Elong. In 2" or 4D, %	Hardness Rockwell B
80,000	35,000	30	84

Typical Room Temperature Properties:

Tensile Strength, psi	0.2% Yeild Strength, psi	Elong. %	Reduction Of Area, %	Hardness Brinell
91,000	48,000	45	67	174

17-4 PH Precipitation Hardening Stainless (UNS S17400)

This 17Cr/4Ni precipitation hardening stainless steel has a combination of high hardness and strength after suitable heat treatment. It also has similar corrosion and heat resistance to Type 304.

Corrosion Resistance: Excellent resistance to the same range of corrosive environments as Atlas Type 304 stainless steel.

Heat Resistance: Good oxidation resistance. To preserve mechanical properties and hardness do use above 900°F.

Heat Treatment: Solution anneal-heat at 1900° F for 1/2 hour and cool to 90° F maximum in air. Oil quenching may be used for small non - intricate sections.

Hardening: A single low temperature process is employed. Heat to 900° - 1150° F 1 to 4 hours and air cool. Typical hardness values after hardening are:

Hardening Temperature (°F)	Typical Hardness Rockwell C
900	44
925	42
1025	38
1075	36
1100	35
1150	33

A decrease in size (shrinkage) takes place during the hardening process, and this change must be allowed for in prior manufacturing operations. The magnitude of the size change is temperature dependent-

900°F - .0005" approx. 1150°F - .001" approx.

Welding: Can be successfully welded by all standard methods. Preheating is not necessary. Properties comparable to those of the parent metal may be achieved in the weld metal by appropriate post-weld heat treatment. Somewhat low weld metal ductility may give rise to notch sensitivity. Precaution should be taken in design and welding procedures to avoid concentration of weld melt stresses.

Typical applications:

Gears Valves Power Plant Plastic molding dies High Strength shafts Engine parts

	С	Mn	Р	S	Si	Cr	Ni	Cu	Cb + Ta
A.I.S.I Analysis	.07 max	1.0 max	.040 max	.030 max	1.0 max	14.0 to 15.5	3.5 to 5.5	2.5 to 4.5	0.15 to 0.45
Typical Yeild Ultim		Ultimate		Hardness		Impact Charpy ft		Modulus of	
Mechanical Properties Annealed	.2% Offset psi	Strength psi	Elongation % in 2 ' '	Rb	BHN		onarpy n os.		icity in on - psi
	130,000	160,000	15	35	330	30		28.5 x 106	
Creep Strength 1% Flow in 10,000 hrs.		Coefficient of Thermal Expansion (In/In/°F x 106)		Resi	Electrical Resistivity- Microhm-Cm at		nal Conduc I-Ft.²/Hr./°F		
Properties	at 100					₿°F	at 212°F	at 9	32°F
	2	3	6		7	77	10.3	1:	3.1

5 <u>15-5 PH Percipitation Hardening Stainless (UNS S15500)</u>

This 15Cr/5Ni precipitation hardening stainless steel is similar to S17400 (17Cr/4Ni) offering the same excellent combination of high hardness and strength in addition to the corrosion and heat resistance of Type 304. The chemical balance of 15Cr/5Ni PH reduces the delta ferrite content enhancing the traverse ductility and impact properties. 15Cr/5Ni PH is produced by vacuum arc remelting and meets the most stringent cleanliness requirements (e.g. for aerospace applications).

Corrosion Resistance: Excellent - Similar to Type 304.

Heat Resistance: Good oxidation resistance. To preserve mechanical properties and hardness do use above 900°F.

Heat Treatment: Solution anneal-heat at 1900°F for 1/2. hour and cool to 90°F maximum in air. Oil quenching may be used for small non-intricate sections.

Hardening: A single low temperature process is employed. Heat to 900°-1150°F 1 to 4 hours and air cool. Typical hardness values after hardening are: A decrease in size (shrinkage) takes place during the hardening process, and this change must be allowed for in prior manufacturing operations. The magnitude of the size change is temperature dependent-

> 900"F - . 0005" approx. 1150"F - .001" approx.

Welding: Can be successfully welded by all standard methods. Preheating is, not necessary. Properties comparable to those of the parent metal may be achieved in the weld metal by appropriate post weld heat treatment. Somewhat low weld metal ductility may give rise to notch sensitivity. Precaution should be taken in design and welding procedures to avoid concentration of weldmelt stresses.

Typical applications:

Aircraft and aerospace components. Nuclear applications. Chemical and paper processing equipment. Valves, shafts, gears. Engine parts.

	С	Mn	Р	S	Si	Cr	Ni	Cu	Cb + Ta
A.I.S.I Analysis	.070 max	1.0 max	.040 max	.030 max	1.0 max	14.0 to 15.5	1.25 to 2.50	2.5 to 4.5	0.45
Typical	Yeild Strength	Ultimate Strength	Elongation	Hardr	iess	Impact Charpy ft	Modulus	s of Elastic	city in
Mechanical Properties	.2% Offset psi	psi	% in 2 ' '	Rb	BHN	lbs.	Te	nsion - ps	i
Annealed	95,000	125,000	20	103	262	37	2	9.0 x 10 ⁶	
	Creep Strength .1% Flow in 1.000	Coefficien	Coefficient of Thermal		ical ivity-		mal Conduc U-Ft.²/Hr./°F		
	hrs. at 900°F psi	Expansio	n (In/In/°F x 2°-212°F	F x Microhm-0		at 212°F	a	at 932°F	
Other Properties	23	6	6.0	77		10.3		13.1	

E-BRITE^{®*} Alloy

Features

- Freedom from chloride stress corrosion cracking
- Highly resistant to organic acids, oxidizing acids, caustics and many chlorine and ammonia compounds
- Resistant to pitting and crevice corrosion
- low thermal expansion and high thermal conductivity

Applications

- Heat exchanger tubing
- Petroleum refining overhead condensers reboilers feed heaters
- Pulp and paper liquor heaters
- Organic acid heaters and condensers
- Nitric acid cooler condensers
- Urea stripper tubing

Chemical Composition, %

	Min.	Max
Nickel	-	.50
Chromium	25.0	27.5
Carbon	-	.010
Molydbenum	.75	1.50
Copper	-	.20
Manganese	-	.40
Phosphorus	-	.02
Sulfur	-	.02
Silicon	-	.40
Columbium	.05	.20
Nitrogen	-	0.015
Ni + Cu	-	.20
Iron	-	.50
	Remainder	

*Registered trademark of Allegheny Ludlum Steel Corporation. UNS S44627

General

E-BRITE is a high chromium specialty alloy which has proven itself over the past decade as an excellent material at construction where stress corrosion cracking, pitting, and crevice corrosion are at ajar concern.

E-BRITE has very good general corrosion resistance in most oxidizing acids, organic acids, and caustics. It has been specified for heat exchanger tubing in a variety at industrial applications, including pulp liquor heaters, bleach equipment, urea strippers, most petroleum refinery oberhead condensers, MEA and DEA reboilers, after-coolers, and feed heaters.

In general, E-BRITE serves best in all at the above where brackish or high chloride water must be used for either heating or cooling the process stream. Being a ferritic alloy, E-BRITE has both a high thermal conductivity and a low coefficient of thermal expansion relative to the 300 series stainless steels.

Tensile	0.2% Yeild	⊢lona %	Hardness
Strength, psi	Strength, psi		Brinell
70,000	50,000	30	84

Stress Corrosion Cracking Resistance: (42% Boiling MgCI₂)

Ally	Results Hours to failure
E-BRITE	No Failure in 200 Hours
Type 304	3
Type316	24

ASA ALLOY 309

51

Features

- Oxidation resistance to 2000°F
- Moderate strength at high temperature
- East of fabrication
- Availability
- Low cost

Applications

- Burner parts
- Heat exchanges & combustion chambers
- Kilns
- Annealing covers & boxes
- Incinerators
- Muffles, retorts
- Radiant tubes
- Power boiler tube hangers
- Anchor bolts
- Brazing fixtures
- Glass forming equipment
- Chemical plant equipment
- Furnace fans, shafts & housings
- Thermowells
- Paper mill equipment
- Neutral salt pots

Composition UNS S30908

Chromium Nickel Carbon Silicon Manganese Phosphorus Sulfur Iron 22.00 - 24.00 12.00 - 15.00 0.08 max 1.00 max 2.00 max 0.045 max 0.030 max balance

General

309 is an austenitic heat resistant alloy with useful oxidation resistance to 2000°F under constant temperature conditions. When frequent heating and cooling is involved the alloy is resistant to about 1850°F.

309 is particularly suited for oxidizing environments involving constant temperature or mild cycling with slow rates of heating or cooling. Because of its relatively high rates of thermal expansion the alloy is not suggested for applications involving severe thermal cycling, such as liquid quenching.

The high chromium and relatively low nickel contents of 309 make it the preferred choice among the austenitic grades for high temperature sulfur bearing atmospheres. Under the most severe conditions, however, alloys completely free of nickel may be required.

309 is one of the most commonly used heat resisting alloys in the range of 1500-2000°F under oxidizing conditions.

Carburization

309 has a degree of resistance to carbon absorption in some environments. Low cost, good sulfidation and moderate carburization resistance combine to make 309 the most widely used alloy for carbon saggers.

ASA ALLOY 310

Features

- Oxidation resistance to 2100°F
- Moderate strength at high temperature
- Resistance to hot corrosion
- Low magnetic permeability
- Strength and toughness at cryogenic temperatures
- Availability

Applications

- Kilns
- Heat exchangers
- Radiant tubes
- Muffles, retorts, annealing covers
- Saggers
- Tube hangers for petroleum refining and steam boilers
- Coal gasifier internal components
- Burners, combustion chambers
- Refractory anchor bolts
- Lead pots
- Fluidized bed coal combustor internals

Composition UNS S31008

Nickel	24.00 - 26	.00
Carbon	19.00 - 22	.00
Silicon	0.08	max
Manganese	0.75	max
Phosphorus	2.00	max
Sulfur	0.040	max
Molybdenum	0.75	max
Copper	0.50	
Iron	balance	

General

310 is an austenitic heat resisting alloy with excellent resistance to oxidation under mildly cyclic conditions to 2100°F. Rapid thermal cycling increases the rate of metal wastage somewhat by spalling of the protective oxide scale. The oxidation resistance of 310 is significantly better than that of 309.

Because of its high chromium and medium nickel contents 310 has good resistance to hot corrosion in a variety of environments. 310 has useful resistance to high temperature environments containing moderate amounts of sulfur. However, sufficiently high concentrations of sulfur may dictate the use of materials free of nickel.

310 is widely used in moderately carburizing atmosphere such as encountered in petrochemical environments. 310 does not possess sufficient resistance to carbon and nitrogen absorption for service in the highly carburizing atmospheres of industrial heat treating furnaces. 330 or 333 are better suited to this latter environment.

The chromium content of 310 provides resistance to aqueous corrosion under oxidizing conditions. 310 is susceptible to chloride ion stress corrosion cracking but is superior in this respect to the lower alloy stainless 304 and 316. 310 has fair resistance to polythionic acid attack. Resistance to intergranular attack of material intended for service in the 850-1000°F range may be improved by thermal stabilization at 1500-1550°F for four hours.

Features

- Oxidation resistance to 2200°F
- Resistant to carburization and nitriding
- Resistant to thermal shock
- Good strength at elevated temperature
- Metallurgical stability
- Chloride ion stress corrosion cracking resistance

Applications

- Furnace containers-carburizing, carbonitriding, annealing, malleablizing
- Muffles, retorts
- Quenching fixtures
- Bar frame heat treating baskets
- Heat exchangers
- Radiant tubes
- Salt pots, both neutral and cyanide
- Gas turbine parts
- Petrochemical furnace components
- Furnace fans and shafts
- Conveyors
- Hot pressing platens

Composition

Chromium	18.00 - 20	.00
Nickel	34.00 - 37	.00
Carbon	0.08	max
Silicon	1.00 - 1.50) ^a
Manganese	2.00	max
Phosphorus	0.030	max
Sulfur	0.030	max
Copper	1.00	max
Iron	balance	

Specifications UNS N08330 ASTM B 511, B 512, B 535, B 536, B 546, B 710, B 739 ASME SB-511, SB-535, SB-536 SB-710 AMS 5592, 5716

^a All product forms except welded pipe and tube, silicon 0.75 - 1.50

General

330 is an authentic heat and corrosion resistant alloy offering an exceptional combination of strength and resistance to carburization, oxidation and thermal shock. Carburization and oxidation resistance to 2200°F are enhanced by a nominal 1.25% silicon addition. 330 finds wide application in high temperature industrial environments where good resistance to the combined effects of carburization and thermal cycling is a prime requisite. 330 remains fully austenitic at all temperatures and is not subject to embrittlement from sigma formation.

Sizes and Availability

330 is available from stock in a greater variety of items and product forms than any other heat resisting alloy composition. Refer to current stock list for details. Special shapes, sizes or quantities may be mill produced promptly.

Welding

330 is readily welded using 330-04 weld fillers of matching composition. 330-04DO lime type electrodes are available from stock in popular sizes. 330-04 bare welding wire is available in straight lengths for GTA welding or spooled for GMA welding. For best results do not preheat, keep interpass temperature low and use reinforced bead contours.

ALLOY 333

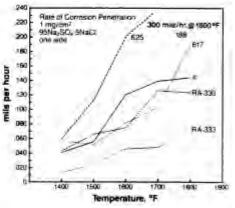
Features

- High temperature SO_X, hot salt corrosion resistance
- Practical immunity to chloride ion and to polythionic acid stress corrosion cracking
- · Good resistance to sulfuric acid
- Excellent oxidation and carburization resistance at elevated temperatures

Applications

- Chemical and petrochemical process equipmen!
- Sulturic acid plant dampers
- Tube hangers in crude oil distillation
- · Flare tips
- · Gas turbine combustion cans
- Sour water stripper reboiler lining
- Molten glass
- Heat treating muffles, retorta and fixtures

Chemical Composition, %


	Min.	Max.
Nickel	44.00	47.00
Chromium	24.00	27.00
Molybdenum	2.50	4.00
Cobalt	2.50	4.00
Tungsten	2.50	4.00
Carbon	1.00	0.08
Silicon	0.75	1.50
Manganese	-	2.00
Phosphorus	-	0.030
Sulfur		0.030
Iron	Remainder	
UNS N06333		

General

333 is a high chromium nickel based superalloy with extreme temperature corrosion resistance and strength. In addition to high temperature properties, 333 has useful resistance to hot sulfuric acid and to hydrochloric acid solutions.

333 is one of the few materials that can withstand corrosive conditions ranging from aqueous to white heat. The alloy has been used for dampers and refractory anchors in 13% SO_2/SO_3 at 1800°F, and for refinery flare tips. Upon shutdown, 333 resists acid attack by sulphuric acid formed below the dew point. It also resists polythionic acid stress corrosion cracking. 333 has exceptional resistance to molten glass and has replaced platinum spinnerets in the manufacture of fiberglass.

Mechanical Properties

Minimum Room Temperature Properties:

Tanalle	0.2% Tield	Elong. in 3"	Hardinesi
Strength, pei	Strangin, pol	or 40, %	Accineri B
80.000	35.000	30	99 millik

RA 85H* (UNS S30615)

Features

- Outstanding resistance to carburization
- Resistance to combined carburization and sulfidation (better than T310, T330 and a cobalt-base alloy)
- Good oxidation resistance
- Good fabric ability
- Weldable with matching combination filler metal
- Better hot strength than T309, T310 and 600

Applications

- Heat treating fixtures and bar frame baskets
- Molten salt hangers for austempering
- Sleeves and saggers fro baking carbon products
- Radiat tubes
- Waste incineration
- Fluidized beds
- Combustion nozzles

Composition, %	
Nickel	14.5
Chromium	18.5
Silicon	3.5
Aluminum	1.0
Carbon	0.20
Manganese	0.5
Iron	Remainder

*Registered trademark of Rolled Alloys, Inc.

General

RA85H is a fully austenitic heat resistant alloy modified with high silicon and aluminum. RA85H is annealed to provide good high temperature strength combined with excellent resistance to thermal fatigue. The addition of silicon for RA85H provides exceptional resistance to carburization. This property is critical in a variety of applications including heat treating and waste incineration.

56 HR-120TM Alloy

Features

- Outstanding strength up to 2000°F
- Good resistance to carburizing and sulfidizing atmospheres
- Oxidation resistance
- Good fabricability
- Weldable with 556' alloy filler wire and MUL TIMET''' covered electrodes

Applications

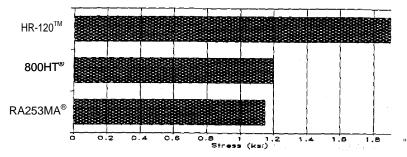
- Heat treating fixtures and bar frame baskets
- Wire mesh furnace belts and basket liners
- Cast link belt pins
- Waste incinerators
- Recuperators
- Fluidized bed components

Chemical Composition

(Weight %)

Nickel	37
	0.
Chromium	25
Cobalt	3 max
Molybdenum	2.5 max
Tungsten	2.5 max
Columium	0.7
Manganese	0.7
Silicon	0.6
Nitrogen	0.2
Aluminum	0.1
Carbon	0.05
Boron	0.004
Iron	balance

General


HR-120 alloy, produced by Haynes International and supplied by roiled Alloys, is a solid-solution strengthened heat-resistant alloy that provides excellent strength of elevated temperatures combined with very good resistance to carburizing and sulfidizing environments. Its oxidation resistance is comparable to other widely used Fe-Ni-Cr materials, such as 800 HT. The strength of HR-120 alloy is what sets it apart from the others. This improved strength allows for thinner cross-sectional construction in certain applications which can lead to greater thermal efficiency. For example, a heat treat basket constructed from 3/8" diaeter HR-120 alloy bar can provide equivalent or superior performance to one constructed from 1/2 diameter 330 alloy, with a 43% reduction in weight. Having a maximum service temperature of 2000°F, HR·l20 alloy is quickly becoming accepted as a standard material of construction in many high temperature applications.

<u>HR -120™ ALLOY</u>

(Continued)

Physical Properties

Density	0.291 lb/in ³ (8.07 gm/cm ³) 2375-2600°F (1300-1425°C)	Thermal	Thermal Expansion (iin/in °F)	
Melting Range		9.7 x 10 ⁻⁶	(70-1600°F)	
Dynamic Modulus at Elasticit	y (Room Temperature):	28.6 x 10 ⁶	psi	
Average Room Temperature	Tensile Properties			
<u>Ultimate Tensile Strength (k</u> 106	si) 0.2% Yield Strength 45	(ksi)	Elongation (in 2 In.) 50%	
Stress to Produce Ruptur	e in 10,000 Hours (1600°F)		5070	

Fabrication

Welding: HR-120 alloy is readily wieldable by Gas Tungsten Arc (TIG), Gas Metal Arc (MIG), and Shielded Metal Arc (SMAW) welding processes using 556¹ alloy filler wire or MULTIMET[®] electrodes. Many of the alloy's welding characteristics are similar to those for nickel alloys and the same precautions apply. Any start/stop cracking should be removed by grinding prior to further welding. Do not attempt remelt or "wash out" welding cracks.

Machining: HR-120 alloy can be readily machined using conventional techniques. Generally, the same practices are employed as those used with the 300 series austenitic stainless steels. Some minor adjustments may be required to obtain optimum results.

HR-120 & 556 are trademarks and MULTIMFT is a reregistered trademark of Havnes International Inc.

58 Alloy <u>446</u>

Iron UNS S44600

Features			
•	Oxidation	resistance t	to 2200°F
•	Sulfidation	n resistance	
•	Availabili	ty	
•	Resists att	ack by mol	ton
	copper all	oys	
Applicatio	ons		
•	Recuperat	ors	
•		on chamber	s
•	Soot blow		-
•	 Neutral salt pot electrodes 		
•	 Oil burner components 		
•		conveying	
	copper alle		monten
•	Kiln lining	-	
•	 Thermocouple protection tubes 		
 Stack dampers 			
 Boiler baffles 			
•	 Gas-injection nozzles for 		
	various molten compounds		
•	 Flame rods 		
	1 14110 104	5	
Compositi	ion		
Chromiun	ı	23.00	27.00
Carbon		0.15	max
Nitrogen		0.25	max
		max	
G ¹¹		max	
Phosphorus 0.040 max			
Sulfur			

balance

General

446 is a high chromium ferritic heat resisting alloy with excellent resistance to oxidation and to various forms of hot corrosion. The alloy is most commonly used for service between 1500 and 2200°F (815 and 1200°C) although its elevated temperature strength is quite low.

446, in common with other high chromium ferritics, embrittles severely when held in, or cooled slowly through the 700-1000°F (370-540°C) temperature range. This phenomenon is referred to as 885°F (475°C) embrittlement. 446 should not be used in this temperature range unless near complete loss of room temperature ductility may be tolerated. 446 is also subject to room temperature embrittlement from sigma phase formation after long time service in the 1000-1300°F (540-700°C) temperature range. Both 885°F and sigma phase embrittlements are reversible and ductility may be restored by annealing.

Molten Metal Corrosion

Unlike austenitic stainless or nickel alloys, 446 resists intergranular penetration by molten copper or silver alloys. 446, like other metals, is not particularly resistant to molten aluminum.

TYPE 4340V

AMS 6414, AMS6415, MIL S 8844 CL1, MIL-S-5000 AMS 2300, DMS 1555, BMS 7-28

4340 is a heat treatable, low alloy steel containing nickel, chromium and molybdenum. It is known for it toughness and capability of developing high stength in the heat treated condition while retaining good fatigue strength.

Typical applications are for structural use, such as aircraft landing gears and shafts and other structural parts. Machining is best done with this alloy in the annealed or normalized and tempered condition. It can be machined by all conventional methods. However in the high strength conditions of 200 ksi or greater the machinability is only from 25% to 10% that of the alloy in the annealed condition.

4340 has good ductility in the annealed condition and most forming operations are carried out in that condition. It can be bent or formed by spinning or pressing in the annealed state.

Chemical Composition (Wt. %)	
С	0.37-0.43
Cr	0.7-0.9
Fe	96
Mn	0.7
Мо	0.2-0.3
Ni	1.83
Р	Max 0.035
S	Max 0.04
Si	0.23

TYPE 300M/4340 Mod AMS 6257, MIL S 8844 CL3, AMS 6419 BMS 7-26, DMS 1935

300 M is a low alloy, vacuum melted steel of very high strength. Essentially it is a modified AISI 4340 steel with silicon, vanadium and slightly greater carbon and molybdenum content than 4340. 300M has a very good combination of strength (280 to 305 ksi), toughness, fatigue strength and good ductility. It is a through hardening alloy.

Applications for 300M steel are those that require strength in the 290 - 300 ksi range, such as aircraft landing gear, high strength bolts and airframe parts.

Machining is best accomplished with the alloy in the normalized and tempered condition. Final machining to finish tolerances is done by grinding with care due the hardness of the heat treated alloy (Rockwell C 55). It is important to do a stress relief anneal at 550 °F after finish grinding.

Formability by conventional methods is good in the annealed condition. The alloy behaves much like AISI 4340 steel.

Chemical Composition (Wt. %)	
С	0.4-0.46
Cr	0.7-0.95
Fe	93.4-94.8
Mn	0.65-0.9
Мо	0.3-0.45
Ni	1.65-2.0
P	Max 0.035
S	Max 0.04
Si	1.45-1.80
V	Min 0.05

TYPE 13-8MO AMS 5629, DMS 2100, ASTM A 564 GR XM13 AMS 2300, AMS 5864

13-8MO is commonly used for manufactuing air frame structural components, missle components, valve parts, fasteners and chemical process equipment.

Chemical Composition (Wt. %)		
AI	1.05	
С	0.03	
Cr	12.80	
Mn	0.10	
Мо	2.30	
N	0.005	
Ni	8.0	
Р	0.005	
S	0.004	
Si	0.05	

TYPE 15-5 AMS 5659, A 705/705 M, ASTM A564 GR 630 AMS 2300, AMS 5862

Type 15-5 is commonly used for manufactuing aircraft and missle fittings, fasteners, gears, turbine and pump blades, shafts.

Chemical Composition (Wt. %)		
с	0.035	
Cb	0.30	
Cr	14.50	
Cu	3.50	
Mn	0.50	
Ni	4.75	
Р	0.02	
S	0.015	
Si	0.5	

BERYLLIUM COPPER C-172 ALLOY C-172 TO ASTM B-196 & AMS 4533 + QQ-C-530

Typically used for oil patch energy exploration components, Aircraft bushings, drilloing and machine tools

Chemical Composition (% max., unless shown as range	e or min.)
Cu ⁽¹⁾ Al Be ₍₂₎ Co Si	98.1 0.20 1.80-2.00 0.20 min 0.20
 (1) Cu value includes Ag. (2) Ni + Co, .20 min: Ni + Fe + Co, .6% max. Ni + Note: Cu + Sum of named elements, 99.5% min. 	

C63000 NICKLE ALUMINUM BRONZE AMS 4640, AMS 4880, ASTM B150 GRADE 630, CA 18 (U.K.) TEMPER HR 50 OR TQ50

C63000 alloy is an excellent choice for applications involving heavy loads, adhesive wear, friction, abrasive wear and corrosion. The addition of nickle increases the alloys strength without diminishing its excellent ductility, toughness and corrosion resistance. Typical applications for C63000 nickle aluminum bronze include aircraft landing gear components, strut bearings, main pistons, trunnion bearings and similar vital components.

Chemical Composition (Wt. % max)	
Copper	Remainder
Iron	4.0
Tin	0.20
Zinc	0.30
Aluminum	11.0
Manganese	1.50
Silicon	0.25
Nickel (incl. Co)	5.50

NICKEL 200 (UNS N02200)

Nickel 200 is commercially pure metal used structurally in corrosive environments. A tough and ductile metal at both high and low temperatures nickel is widely used in the food, electrical and chemical fields.

Typical uses include: cable sheathing, terminals, lead wire, fuel cells, heat exchangers, deep drawn electronic cans, shells, caustic shipping containers, piping and other uses where product purity is important. Nickel 200 may be joined by conventional brazing, soldering and welding techniques. Nickel 141 electrodes and nickel 61 filler wires are used to weld nickel to itself and other metals. Shapes and sizes other than those shown as stock are available on special order from mill service centres..

Chemical Composition (nominal analysis)		
Carbon, max.	0.08%	
Manganese, max.	0.048	
Sulfur, max.	0.005	
Silicon, max.	0.18	
Iron, max	0.02	
Copper, max	0.13	
Nickel, max.	99.5	

66 NICKEL 200

(Continued)

TYPICAL MECHANICAL & PHYSICAL PROPERTIES		
Tensile Strength, psi (C.D. Annealed Bar)	65,000	
Yield Strength, psi (C.D. Annealed Bar)	22,500	
Elongation, % (C.D. Annealed Bar)	48	
Density Lb/cu.in.	0.321	
Specific Heat (BTU/Lb•°F)	0.109	
Thermal Expansion (In/In/°F x 10 ⁻⁶) 70°F	.58	
Thermal Conductivity (BTU•in/ft2•h•°F) 70°F	520	
Electrical Resistivity (ohm•Circ.Mil./ft)	57	
Modulus of Elasticity. psi	29,600,000	
Melting Point	2635	
Curie Point (°F)	680	
Poisson's Ratio	0.26	
Colour Identification Code	RED	

Alloy 276 (UNS N10276)

Alloy 276 is a nickel-chrome alloy with high moly and tungsten but low iron and silicon contents, which provides superior corrosion resistance to a wide variety of environments. The composition is specially formulated to maintain corrosion resistance, even in the weld heataffected zone, thus making Alloy 276 suitable even in the as welded condition. The alloy has excellent resistance to general pitting and stress corrosion cracking and resists oxidation up to approximately 1900°F. Alloy 276 has found wide acceptance in the chemical and petro-chemical process industry, flue gas desulfurization systems and the pulp and paper industries. It shows exceptional resistance to ferric and cupric chlorides, hot contaminated mineral acids, solvents, chlorine and chlorinecontaminated media, dry chlorine, formic acid, acetic acid acetic anhydride, sea water and brine. Alloy 276 is one of the few materials that resists wet chlorine gas, hypochlorite and chlorine dioxide solutions. The alloy has shown remarkable corrosion resistance in the especially corrosive areas of flue gas desulfurization systems, such as outlet ducting leading to the stack. It has also been used to solve corrosive problem areas in municipal sewage treatment plants.

Chemical Composition (nominal analysis)		
Carbon, max.	0.020%	
Manganese, max.	1.00	
Sulfur, max.	0.015	
Chromium	14.5-16.5	
Iron	4.0-7.0	
Molybdenum	15.0-17.0	
Tungsten	3.0-4.5	
Silicon, max.	0.08	
Cobalt, max.	2.5	
Vanadium, max.	0.35	
Nickel	Balance	

Room Temperature Mechanical Properties (minimum)		
Tensile Strength, psi	100,000	
Yield Strength (0.2% offset), psi	41,000	
Elongation in 2 in., %	40	

Short - Time Elevated-Temperature Tensile Properties of Plate, 0.75 in. (Heat Treated at 2100°F, water quenched)					
Test Tensile Yield Strength Elongation Temperature Strength (0.2% Ofset) (2 in.) °F psi psi %					
Room	114000	52000	70		
400	102000	44000	71		
800	94000	34000	75		
1200	87000	33000	73		
1600	64000	30000	92		
1800	39000	27000	127		

Physical Properties		
Density, lb/cu. In.	0.321	
Gm./cu. Cm	8.89	
Melting range, °F	2415- 2500	
Thermal coef. Expansion/°F		
75 to 200°F	6.2 x 10- 6	
75 / 100005	7.4 x 10-	
75 to 1000°F	6 8.8 x 10-	
75 to 1700°F	6	
Thermal conductivity, Btu/sq. ft.hr. °F/in.		
-270°F	50	
0°F	65	
100°F	71	
1000°F	132	
1400°F	159	
2000°F	195	
Electrical resistivity, ohms/cir. Mil. Ft.	779	
Specific heat, Btu/lb./°F	0.102	
Modulus of elasticity, psi (dynamic)		
Room temperature	29.8 x 10-6	
1000°F	25.5 x 10-6	

Avaliability			
Plate	3/16 inches and thicker Dimensions of 72x320 inches max.		
Plate Shapes	Variety of plate shapes available, including Abrasive cut bar		

- Resistant to hydrofluoric acid
- Freedom from chloride stress corrosion cracking
- Useful resistance to dry chlorine, fluorine, hydrogen chloride and hydrogen fluoride gases
- Good strength and toughness over a wide temperature range

Applications

- Caustic evaporators
- Hydrofluoric acid production
- Chemical processing equipment
- Salt protection equipment
- Crude oil distillation towers
- Marine components
- Valve and pump components

Chemical Composition, %

	Max.	Min.
Nickel	63.0	70.0
Copper	28.0	34.0
Iron	-	2.5
Carbon	-	0.3
Manganese	-	2.0
Sulfur	-	0.024
Silicon	-	0.5

UNS N04400

General

Alloy 400 is a ductile nickel-copper alloy with resistance to a wide range of corrosive environments. This grade is often chosen to handle sulfuric acid under reducing conditions. Alloy 400 possesses useful resistance to hydrochloric acid up to about 10% concentration at room temperature. The alloy has excellent resistance to sea or brackish water under high velocity conditions. Alloy 400 is one of the few materials with good resistance to hydrofluoric acid.

The Curie point of Alloy 400 is near room temperature, and is affected by small variations in chemical composition. For this reason, some heats of Alloy 400 are magnetic at room temperature while others are not.

Mechaical Properties

Minimum Room Temperature Properties:

Tensile Strength, psi	0.2% Yield Strength, psi	Elongation in 2" or 4D, %
70,000	28,000	35

Typical Room Temperature Property Range:

Tensile Strength, psi	0.2% Yield Strength, psi	Elongation %	Hardness Brinell
70,000-	28000-	35-50	110-140
85,000	50,000		

Effect of Oxygen on Corrosion of RA 400 in

Hydrofluoric Acid

Vol. % Oxygen	Corrosion Rate, mils per year	
in Hydrogen		
Purge Gas	Liquid	Vapor
0	11	1
0.1	21	2
1	75	12
Air Blanket (No Hydrogen)	22	1000

Laboratory Test: 1000 hours (41.5 days)

40% Hydrofluoric Acid Boiling - 266°F(130°C).

Alloy 600 (UNS N06600)

Features

- Resistant to hot, dry, chlorine gas
- More resistant to sulfur attack than RA 200 and RA 201
- Good oxidation resistance to 2000°F

Applications

- Jacketed heat exchangers
- Chlorination equipment up to 1000°F
- Paper mill alkaline digesters
- Vegetable and fatty acid vessels
- Chemical and food processing equipment
- Heat treating muffles and retorts

Chemical Composition, %

	Min.	Max.
Nickel	72.0	-
Chromium	14.0	17.0
Iron	6.0	10.0
Carbon	-	-
Copper	-	0.5
Manganese	-	1.0
Sulfur	-	0.015
Silicon	-	0.5

UNS N06600

Alloy 600 is a nickel-chromium-iron alloy for use in environments requiring resistance to heat and corrosion. The high nickel content of this alloy makes it resistant to corrosion by a number of organic and inorganic compounds, and gives it excellent corrosion resistance to chloride-ion stress-corrosion cracking. Its chromium content gives the alloy resistance to sulfur compounds and various oxidizing environments. In addition Alloy 600 has excellent mechanical properties and a combination of high strength and good workability. The alloy performs well in applications with temperatures from cryogenic to more than 2000°F.

Various corrosive and high temperature applications for Alloy 600 include chemical and food processing, heat treating and aircraft/aerospace.

Mechanical Properties Minimum Room Temperature Properties

Tensile Strength, psi	0.2% Yeild Strength, psi	Elongation in 2' ' or 4D, %
80,000	35,000	30

Typical Room Temperature Property Range

Tensile	0.2% Yeild	Elong. %	Hardness
Strength, psi	Strength, psi		Brinell
80,000- 105,000	35,000- 50,000	30-55	130-180

Corrosion in Dry Chlorine

Alley	Approx. Temperature at which Given Corrosion Rate is Exceeded in Short Time Test, ℉			Suggested upper Temperature Limit for
	0.03 in.	0.12 in.	1.2 in.	Continuous
	Per Year	Per Year	Per Year	Service ° F
RA 400	750	900	1000	800
RA 200	950	1100	1250	1000
RA 600	950	1050	1250	1000
Copper	350	500	550*	400
Platinum	900	1000	1050	500

ALLOY 601 (UNS N06601)

Alloy 601 is a nickel-chromium alloy with an addition of aluminum for outstanding resistance to oxidation and other forms of high temperature corrosion. It also has high mechanical properties at elevated temperatures.

Alloy 601 is commonly used for industrial furnaces; heat treating equipment such as baskets, muffles and retorts; petro chemical and other process equipment; and gas turbine components. Standard product forms are round, flats, forging stock, pipe, tube, plate, sheet, strip and wire.

Limiting Chemical Composition, %	
Carbon, max.	0.10%
Manganese, max.	1.0
Sulfur, max.	0.015
Silicon, max.	0.50
Copper, max	1.0
Nickel (plus Co.)	58.0-63.0
Chromium	21.0-25.0
Aluminum	1.0-1.7
Iron	remainder

72 ALLOY 601 (Continued)

PHYSICAL CONSTANTS & THERMAL PROPERTIES		
Density, Lb/cu.in (Mg/m ³)	0.293 (8.11)	
Melting Range, °F (°C)	2480-2571 (1360-1411)	
Specific Heat, BTU/Lb•°F (J/kg•°C)	0.107 (448)	
Thermal Conductivity, BTU•in/SqFt•Hr•°F	78	
W/m•°C	11.2	
Electrical Resistivity (ohm°•circ.Mil./ft)	717	
Curie Temperature, °F (°C)	< 320 (<196)	
Permeability at 200 oersted (15.9 kA/m)	1.003	
Coefficient of Expansion, 70-200°F. 10 ⁻⁶ in/in•°F	7.60	
21-93C, m/m•°C	13.75	

RUPTURE STRENGTH (1000h)	psi	MPa
1200°F / 650°C	28000	195
1400°F / 706°C	9100	63
1600°F / 870°C	4300	30
1800°F / 980°C	2100	14
2000°F / 1095°C	1000	7

ALLOY 625 (UNS N06625)

625 is a nickel-molybdenum-columbium alloy well suited for applications where strength and corrosion resistance are required. The alloy exhibits exceptional fatigue strength and superior strength and toughness at temperatures ranging from cryogenic to 2000°F. It is resistant to oxidation, general corrosion, pitting and crevice corrosion and is virtually immune to chloride-ion stress-corrosion cracking. These properties are derived from additions of molybdenum and columbium to the alloy's basic nickel-chromium composition. In addition, 625 is readily fabricated by standard industry practices. The combination of strength, corrosion resistance and fabricabilty make 625 suitable for a variety of applications. These include components such as heat exchangers, bubble caps, reaction vessels, distillation columns and valves for chemical processing plants, sea water applications, aerospace applications, nuclear reactor components and flue gas desulfurization systems.

Chemical Composition (nominal analysis)		
Carbon , max.	.10%	
Manganese, max.	.50	
Phosphorus, max.	0.015	
Sulfur, max.	0.015	
Silicon, max.	.50	
Chromium	20.0-23.0	
Nickel, min.	58.0	
Molybdenum	8.0-10.0	
Iron, max.	5.0	
Cobalt, max. (if determined)	1.0	
Columbium + Tantalum	3.15-4.15	
Aluminum, max.	0.40	
Titanium, max.	0.40	

74 <u>ALLOY 625</u> (Continued)

Room Temperature Mechanical Properties (minimum)		
		Code Case 1409
Tensile Strength, psi	120,000	100,000
Yield Strength (0.2% offset), psi	60,000	40,000
Elongation, %	30	30
Reduction of Area, %	25	40

Physical Properties	
Density, grams per cu.cm.	8.44
Ib.per cu.in.	0.305
Melting Range, °F	2350-2460
Specific Heat at 70°F	
Btu per lb.per °F	0.098
Magnetic Permeability (75°F, 200 oersted)	1.0006
Curie Temperature, °F	<-320
Modulus of Elasticity at 70°F, 10 ⁶ psi	
Tension	30.1
Torsion	11.8
Mean Coefficient Of Thermal Expansion	
10 ⁶ inches per inch per °F	
70° to 200°F	7.1
70° to 400°F	7.3
70° to 600°F	7.4
70 ° to 800°F	7.6
70° to 1000°F	7.8
70° to 1200°F	8.2
70° to 1400°F	8.5
70° to 1600°F	8.8
70° to 1700°F	9
Electrical Resistivity,	
Ohm per Circ.mil.per ft.	
70°F	776
100°F	780
200°F	794
400°F	806
600°F	812
800°F	818
1000°F	830
1200°F	830
1400°F	824
1600°F	818
1700°F	-
1800°F	812
2000°F	806

Availability	
Plate	3/16 inches and thicker Dimensions of 72 X 320 inches max.
Plate Shapes	Variety of plate shapes available, including Abrasive Cut Bar

ALLOY 800 (UNS N08800)

Alloy 800 is a nickel-iron-chromium alloy with good strength and excellent resistance to oxidation and carburization in high temperature atmospheres. It also resists corrosion by many aqueous environments. The alloy maintains a stable, austenitic structure during prolonged exposure to high temperatures. Alloy 800 is commonly used for process piping, heat exchangers, carburizing equipment, heating element sheathing and nuclear steam generator tubing. Standard product forms are round, flats, forging stock, pipe, tube, plate, sheet, strip and wire.

Limiting Chemical Composition, %		
Carbon, max.	0.10%	
Manganese, max.	1.50	
Sulfur, max.	0.015	
Silicon, max.	1.0	
Copper, max	0.75	
Nickel	30.0-35.0	
Chromium	19.0-23.0	
Aluminum	0.15-0.60	
Titanium	0.15-0.60	
Iron, min	39.5	

PHYSICAL CONSTANTS & THERMAL PROPERTIES		
Density, Lb/cu.in (Mg/m ³)	0.287 (7.94)	
Melting Range, °F (°C)	2475-2525 (1357-1385)	
Specific Heat, BTU/Lb•°F (J/kg•°C)	0.11 (460)	
Thermal Conductivity, BTU•in/SqFt•Hr•°F	80	
W/m•°C	11.5	
Electrical Resistivity (ohm°•circ.Mil./ft)	595	
Curie Temperature, °F (°C)	175 (115)	
Permeability at 200 oersted (15.9 kA/m)	1.014	
Coefficient of Expansion, 70-200°F. 10 ⁻⁶ in/in•°F	7.90	
21-93C, m/m•°C	14.40	

RUPTURE STRENGTH (1000h)	psi	MPa
1000°F / 540°C	48000	330
1100°F / 595°C	32000	220
1200°F / 650°C	21000	145
1300°F / 705°C	11000	75

76 ALLOY 800HT (UNS N08811)

Alloy 800HT is a nickel-iron-chromium alloy having the same basic composition as Alloy 800 but with significantly higher creep rupture strength. The higher strength results from close control of the carbon, aluminum and titanium contents in conjunction with a high temperature anneal. Alloy 800HT is commonly used in chemical and petrochemical processing, in power plants for super-heating and reheater tubing, in industrial furnaces and heat treating equipment. Standard product forms are round, flats, forging stock, pipe, tube, plate, sheet, strip and wire.

Limiting Chemical Composition, %		
Carbon	0.60-0.10	
Manganese, max.	1.50	
Sulfur, max.	0.015	
Silicon, max.	1.0	
Copper, max.	0.75	
Nickel	30.0-35.0	
Chromium	19.0-23.0	
Aluminum	0.15-0.60	
Titanium	0.15-0.60	
Aluminum + Titanium	0.85-1.20	
Iron, min.	39.5	

	0.007 (7.04)
Density, Lb/cu.in (Mg/m ³)	0.287 (7.94)
Melting Range, °F (°C)	2475-2525 (1357-1385)
Specific Heat, BTU/Lb•°F (J/kg•°C)	0.11 (460)
Thermal Conductivity, BTU•in/SqFt•Hr•°F	80
W/m•°C	11.5
Electrical Resistivity (ohm°•circ.Mil./ft)	595
Curie Temperature, °F (°C)	175 (115)
Permeability at 200 oersted (15.9 kA/m)	1.014
Coefficient of Expansion, 70-200°F. 10 ⁻⁶ in/in•°F	7.90
21-93C, m/m•°C	14.40

RUPTURE STRENGTH (1000h)	psi	MPa
1200°F / 650°C	24000	165
1300°F / 705°C	15000	105
1400°F / 760°C	10000	70
1600°F / 870°C	4700	32
1800°F / 980°C	2000	14

ALLOY 825 (UNS N08825)

825 is a nickel-iron-chromium- molybdenumcopper alloy for use in extremely corrosive environments. The nickel content of this alloy makes it resistant to chloride-ion stress-corrosion cracking. Additions of molybdenum and copper give 825 resistance to pitting and to corrosion in reducing acid environments such as sulfuric or phosphoric acid solutions. The alloy's chromium content gives it resistance to various oxidizing environments, such as nitrates, nitric acid solutions and oxidizing salts. In addition, 825 offers excellent resistance to corrosion by sea water and resists intergranular corrosion after being heated in the sensitizing temperature range (1200-1400°F).

The many corrosion resistant properties of 825 make the alloy a suitable choice for a variety of difficult applications. Possible uses include fabricated equipment found in chemical and petro-chemical processing, pulp and paper manufacturing, flue gas desulfurization systems and metal pickling operations.

Chemical Composition (nomi	nal analysis)
Carbon, max.	0.05%
Manganese, max.	1.0
Sulfur, max.	0.03
Silicon, max.	0.5
Chromium	19.5-23.5
Nickel (plus Cobalt)	38.0-46.0
Iron, min.	22.0
Molybdenum	2.5-3.5
Copper	1.5-3.0
Aluminum, max.	2.0
Titanium	0.6-1.2

78 <u>ALLOY 825</u> (Continued)

Room Temperature Mechanical Properties (minimu	m)
Tensile Strength, psi	85,000
Yield Strength (0.2% offset), psi	35,000
Elongation in 2in., %	30

Physical Properties	
Density, grams per cu.cm.	8.14
lb.per cu.in.	0.294
Magnetic Permeability (70°F, 200 oersted)	1.005
Curie Temperature, °F	<-320
Modulus of Elasticity in Tension (Dynamic), psi	
80°F	28,300,000.00
500°F	26,400,000.00
1000°F	23,800,000.00
1200vF	22,700,000
1350°F	21,700,000
1500°F	20,300,000
1600°F	19,400,000
1700°F	18,300,000
1800°F	17,300,000
Melting Range, °F	2500-2550
Mean Coefficient of Thermal Expansion	
10 ⁶ inches per inch per °F	
80° to 200°F	7.8
80° to 400°F	8.3
80° to 600°F	8.5
80° to 800°F	8.7
80° to 1000°F	8.8
80° to 1200°F	9.1
80° to 1400°F	9.5
80° to 1600°F	9.7
Electrical Resistivity,	
Ohm per circ.mil. Per ft.	
78°F	678
100°F	680
200°F	687
400°F	710
600°F	728
800°F	751
1000°F	761
1200°F	762
1400°F	765
1600°F	775
1800°F	782
2000°F	793

Availability	
Plate	3/16 inches and thicker Dimensions of 84 X 320 inches max.
Plate Shapes	Variety of plate shapes available, including Abrasive Cut Bar

AQUATECH 17

Aquatech 17 is a chromium-nickel-copper alloy product that is precipitation hardened during the manufacturing process to give it uniform tensile, yield strengths and superior hardness. These three qualities combine to create a strong, very corrosion resistant boat shaft regardless of size that is also very cost effective. The superior strength of Aquatech 17 allows boat builders to to reduce the size of of underwater components resulting in reduced weight and drag and therefore superior performance.

Aquatech 17 is used in military patrol craft, offshore crew and supply vessels, commercial

fishing boats, ferry boats, excursion boats and pleasure craft. Aquatech 17 boat shafting is ground and polished to a 64 RMS finish, precision straightened and protected during shipping and storage by fibre tubing. Aquatech 17 may be weld-repaired in worn bearing areas provided that a post-weld heat treat at 1150° for four hours be performed. Aquatech 17 exhibits good corrosion resistance in both salt and brackish water. To avoid galvanic corrosion, cathodic protection is recommended. Navy grade zinc anodes properly installed, should provide satisfactory protection against galvanic corrosion.

Elements	%
Carbon, max	070
Manganese, max	1.00
Phosphorus, max	0.04
Sulfur, max	0.03
Silicon, max	1.00
Chromium	15.00-17.00
Nickel	3.50-5.00
Copper	3.00-5.00
Columbium & Tantalum	0.15-0.45

Typical Chemical Composition Aquatech 17

Aquatech 19 boat shafting is an 18-8 stainless alloy with nitrogen added to increase both strength and corrosion resistance, while maintaining ductility and, like austenitic stainless steels, it is non-magnetic.

Aquatech 19 is more resistant to corrosion than Aquatech 17. Under certain conditions it may exhibit crevice attack, but can be protected by use of navy grade, properly installed, zinc anodes. Aquatech 19 is used in commercial fishing boats and pleasure boats and occasionally in work boats where higher speeds and more frequent starting and stopping occurs. Aquatech 19 boat shafting is ground and polished to close tolerances and surface finish, precision straightened and protected during shipping and handling by fibre tubing. Aquatech 19 exhibits equal strength to Aquatech 17 up to 2" in diameter.

Typical Chemical Composition Aquatech 19

Carbon, max. 0.08 Manganese, max. 2.00 Phosphorus, max. 0.04 Sulfur, max. 0.03 Silicon, max. 1.00
Phosphorus, max. 0.04 Sulfur, max. 0.03 Silicon, max. 1.00
Sulfur, max. 0.03 Silicon, max. 1.00
Silicon, max 1.00
GT
Chromium 18.00-20.00
Nickel 8.00-10.50
Nitrogen

AQUATECH 22 & 22HS

Aquatech 22 boat shafting is a non magnetic, alloy of chromium, nickel and manganese with molybdenum, nitrogen, columbium and vanadium added to create the highest degree of strength and corrosion resistance while maintaining ductility and machinability. Aquatech 22 is used in yachts and other vessels that require more corrosion resistant shafting due to conditions such as running time versus docking time, extreme water temperatures or pollution.

Aquatech 22 boat shafting is produced with careful control of raw materials, chemistry, melting, rolling and heat treating. Aquatech 22 is ground and polished to specified tolerances, precision straightened and protected by fibre tubing for shipping and handling. Aquatech 22 provides the highest degree of resistance to pitting and crevice corrosion in all marine environments. Never the less, catholic protection is recommended using zinc anodes to prevent galvanic corrosion. Auatech 22HS (High Strength) boat shifting is manufactured similarly to Aquatech 22 with additional steps taken to achieve increased tensile and yield strengths. Aquatech 22HS is used in high horsepower luxury yachts and special purpose military vessels. Aquatech 22 HS combines strength similar to Aquatech 17 with greater corrosion resistance. It is available in diameters ranging between 2-1/2" and 6".

Typical Chemical Composition Aquatech 22

Elements	%
Carbon, max	. 0.06
Manganese, max 4.	00-6.00
Phosphorus, max	0.04
Sulfur, max	. 0.03
Silicon, max	1.00
Chromium	50-23.50
Nickel 11.	00-13.50
Nitrogen	20.0-0.40
Molybdemun	1.50-3.00
	0.10-0.30
Vanadium	0.10-0.30

STAINLESS STEEL PIPE & TUBE SPECIFICATIONS TO ASTM

- A-213 Seamless stainless steel boiler, super-heater and heat exchanger tubes. Covers 17 grades of austenitic stainless including most 300 series and 12 grades of ferritic stainless (such as T5, T9, T11, T21 etc.). Usual size range: 1/8" I.D. to 5"O.D. .015" to 1/2" wall minimum wall or average wall minimum wall or average wall
- A-249 Welded austenitic steel boiler, super-heater, heat exchanger and condenser tubes. Covers 24 grades of austenitic A-358 stainless tubing Usual size range: 1/8" I.D. to 5"O.D. .015" to .320" wall Generally nominal wall, but also minimum wall if so specified.
- A-269 Seamless and welded austenitic stainless Seamless and welded austernitic stallness steel tubing for general service: general corrosive resistance and low or high tem-perature service. Covers 18 grades of austernitic stainless. Usual size range: 1/4" I.D. and larger .020 wall and heavier nominal wall
- A-312 Seamless and welded austenitic stain-less steel pipe for high temperature and general corrosive service. Covers 24 grades of stainless pipe, including most 300 series, with no addition of filler material.

Usual size range: 1/8" to 30" nominal pipe size. Schedule 5S to 80S. Dimensions per ANSI B36-19. Nominal pipe size or outside diameter and schedule number of average wall thickness.

A-511 Seamless stainless steel mechanical tub-ing for mechanical applications requiring corrosive resistance or high temperature strength. Covers 14 grades of austenitic steel, including most 300 series, 6 grades of martensitic steel such as 410, 440A etc., 7 grades of ferritic steel such as 430, 443, etc. Usual size range: up to 12-3/4" outside diameter. Wall thickness as required. Cold finished or hot finished.

- A-450 Specification covering general require-ments for ferritic and austenitic steel tubes, including A-249, A-268, A-269, A-270, A-272, A-669, A-688 and others.
- A-530 Specification covering general require-ments for stainless steel pipe, including A-312, A-358, A-376, A-409 and others.

In addition to the above specifications, tubing and pipe to other ASTM specifications can be obtained through ASA including:

A-268 Seamless and welded ferritic stainless steel tubing for general corrosive resistance and high temperature service. Covers 10 grades of ferritic stainless tubing, generally 400 series. They are commonly called straight chromium" type and or for former and are ferromagnetic. Usual size range: Up to approximately 8"

outside diameter. Nominal wall.

A-270 Seamless and welded austenitic stainless steel sanitary tubing for use in the dairy and food industries, and having special surface finishes such as Finish #80, #120, etc. Size range: Up to 4" outside diameter Chemistry: Type 304.

Seamless austenitic chromium-nickel steel still tubes for refinery service for use in carrying fluids at elevated temperatures in various heaters and furnaces. Covers 8 A-271 (300

grades of austenitic stainless (Series). Size range: 2" to 9" outside diameter. Wall over .220". Minimum wall. Hot finished or cold drawn.

- Electric fusion welded austenitic chromi-um-nickel stainless steel pipe for corro-sive or high temperature service. Covers 13 grades of austenitic pipe. Size Range: No restrictions but commer-cial practice generally limits sizes to 8" nominal diameter and over. Class 1- Double welded; use of filler metal; complete radiography. Class 2- Double welded; use of filler metal; no radiography. Class 3- Single welded; use of filler metal; complete radiography. Class 4- Same as Class 3 except that weld pass exposed to the inside pipe surface may be made with-out filler metal. Class 5- Double welded; use of filler metal; spot radiography.
- Seamless austenitic stainless steel pipe for high temperature central station serv-ice. Covers 14 grades of austenitic pipe, including 5 H grades and 2 nitrogen grades specifically intended for high tem-perature service. Produced to nominal pipe size or outside diameter and schedule number or aver-age wall thickness. A-376
- Electric fusion welded (straight or spiral seam), light wall, austenitic stainless steel pipe for corrosive or high temperature service. Covers 10 grades of austenitic pipe (300 series) Size range: 14" to 30" nominal outside diameter. Extra light (Schedule 5's) and light (Schedule 10"s) wall thickness. Steel used in manufacture is hot or cold rolled sheet, or hot finished plate which con-forms to the requirements of A-240. A-409
- Welded stainless steel mechanical tubing A-554 Welded stainless steel mechanical tubing in which appearance, mechanical proper-ties, or corrosive resistance is required. Covers 16 grades of austenitic steel and 3 grades of ferritic steel. Size range: As-welded or cold-reduced mechanical tubing to 16" outside diame-ter. .020 wall and over. Tubing can be produced in round, square, rectangular or special shapes. special shapes.

Welded austenitic stainless steel feedwa-ter heater tubes, including U-tubes for tubular feed water heaters. Covers 9 grades of austenitic steel tubes. Size range: 5/8" to 1" outside diameter .028 average or minimum wall or heavier A-688

or heavier.

MILITARY SPECIFICATIONS

304 cold drawn seamless or welded corrosion resistant steel tubing, 1/4 and 1/2 hard MIL-T-5695D

MIL-T-6737B Welded stainless steel tubing (347 and 321) stabilized, corrosion resistant, heat resistant.

STAINLESS STEEL SHEET & PLATE

MATERIAL SPECIFICATIONS

ASTM A167 Specification for stainless and Heat Resisting Chromium Nickel steel plate, sheet and strip. **ASTM A240** Specification for stainless and Heat Resisting Chromium Nickel steel plate, sheet and strip for pressure vessels. **ASTM A262** Practices for detecting susceptibility to intergranular attack in austenitic stainless steels Methods and definitions for mechanical testing of steel products. **ASTM A370** ASTM A480 A480M Specification for general requirements for flat rolled stainless and heat resisting steel plate, sheet and strip. **ASTM A751** Methods, practices and definitions for chemical analysis of steel products. Hardness equivalents. QQ-S766-Federal specification for steel **ASTM E140** plate, sheet and strip corrosion resisting. Specification for steel: corrosion resisting for plate, sheet and MIL-S-4043 strip (grain size for plate shall be aim 5 max.) MIL-S-5059 Amendment 4 (except product analysis), military specification for steel corrosion resistance (18-8) plate, sheet and strip. Specification for steel plate, sheet and strip corrosion resistance. AMS-5511E AMS-5513D Specification for steel plate, sheet and strip corrosion resistance. AMS-5524 Specification for steel plate and sheet corrosion resistance. ASME-SA240 Specification for heat resisting chromium and chromium nickel steel plate, sheet and strip for pressure vessels. Specification for austenitic stainless steel strip, plate and flat bar ASTM-A666 for structural applications. Specification for steel plate, sheet and strip corrosion resistance. QQ-S-766

DESCRIPTIONS OF PRODUCTS SPECIFIC TO THIS STANDARD

Plate and sheet as used in this specification are described as follows:

Plate: material 3/16 inch in thickness and over in.

Sheet: material under 3/16 in and 24 inch and over in width.

Strip: material under 3/16 inch and less than 24 inch wide.

CHEMISTRY AND MECHANICAL PROPERTIES

The product purchased to this specification shall meet the chemistry and mechanical properties of all the specifications referenced and as written on the purchase order.

DIMENSIONS AND PERMISSIBLE VARIATIONS

Unless otherwise specified in the purchase order, material shall conform to the permissible tolerances shown in Specification ASTM A480/A480M. Should A480/A480M not cover the product being produced, agreement shall be mutually resolved prior to production, by the purchaser and ASA Alloys Inc..

STAINLESS STEEL BAR MATERIAL SPECIFICATIONS

Grade	ASTM	ASME	QQS	AMS	MIL S CODE	COLOUR
303	A582		764B	5640P	7720	DK BLUE
416	A582		764B	5610L		DK BROWN
304/304L	A276 A193B8CL1 A182 A479	SA182 SA479 SA193B8CL1	763E	5639F (304L- 5647F)		GREY
316/316L	A276 A193B8MCL1 A182 A479	SA182 SA479 SA193B8MCL1	763E	5648G (316L- 5653C)	7720	RED
410	A276 A193B6	SA182 SA479 SA193B6	763E	5613N		WHITE
420	A276	SA182	763E	5621D		RED/YELLOW
630(17-4)CONDA	A-564	SA564		5643N		BLACK
630(17-4)DT H 1150	A564	SA564				PURPLE
310	A276 A182	SA182 SA479	763E	5651G		YELLOW/BLK
309	A276 A182	SA182 SA479	763E	5650D		YELLOW
347	A276 A182 A479 A193B8CCL1	SA182 SA479 SA479B8CCL1 SA193B8CCL1	763	5646K		PINK
321	A276 A193B8TCL1	SA479 SA193B8TCL1	763	5645M		GOLD/BLACK

Most grades are available to NACE MR 0175

HARDNESS CONVERSION TABLE

(Approximate)

Brinell Hardness	Rockwell B Scale	Rockwell C Scale	Approximate Tensile Lbs., p.s.i.	Brinell Hardness	Rockwell B Scale	Approximate Tensile Lbs., p.s.i.
653	_	62	324,000	217	96	103,000
627	—	60	311,000	212	96	103,000
601	—	59	306,000	207	95	101,000
578	_	57	290,000	202	94	98,000
555	_	56	284,000	197	93	96,000
534	_	54	270,000	192	92	93,000
514	_	53	263,000	187	91	91,000
495	_	51	250,000	183	90	89,000
477	_	50	243,000	179	89	87,000
461	_	49	236,000	174	88	85,000
444	_	47	223,000	170	87	83,000
429	—	47	217,000	166	86	81,000
415	—	45	211,000	163	85	80,000
401	—	42	194,000	159	84	78,000
388	—	41	188,000	156	83	77,000
375	—	40	182,000	153	82	76,000
363	—	38	171,000	149	81	75,000
352	—	37	166,000	146	80	74,000
331	—	36	162,000	143	79	73,000
321	—	34	153,000	140	78	71,000
311	—	33	148,000	137	77	70,000
302	—	32	144,000	134	76	69,000
293	_	31	140,000	131	74	67,000
285	_	30	136,000	128	73	66,000
277	_	29	132,000	126	72	65,000
269	_	28	129,000	124	71	63,000
262	_	27	126,000	121	70	62,000
255	_	25	120,000	118	69	61,000
248	_	24	117,000	116	68	60,000
241	100	23	115,000	114	67	59,000
235	99	22	112,000	112	66	58,000
229	98	21	110,000	109	65	57,000
223	97	20	108,000	107	64	55,000

Fractional Inches Converted to Decimal Inches and Millimeters

Fraction	Decimal(in.)	mm	Fraction	Decimal(in.)	mm
1/64	0.0156	0.3969	33/64	0.5156	13.0969
1/32	0.0313	0.7938	17/32	0.5313	13.4938
3/64	0.0469	1.1906	35/64	0.5469	13.8906
1/16	0.0625	1.5875	9/16	0.5625	14.2875
5/64	0.0781	1.9844	37/64	0.5781	14.6844
3/32	0.0938	2.3813	19/32	0.5938	15.0813
7/64	0.1094	2.7781	39/64	0.6094	15.4781
1/8	0.1250	3.1750	5/8	0.6250	15.8750
9/64	0.1406	3.5719	41/64	0.6406	16.2719
5/32	0.1563	3.9688	21/32	0.6563	16.6688
11/64	0.1719	4.3656	43/64	0.6719	17.0656
3/16	0.1875	4.7625	11/16	0.6875	17.4625
13/64	0.2031	5.1594	45/64	0.7031	17.8594
7/32	0.2188	5.5563	23/32	0.7188	18.2563
15/64	0.2344	5.9531	47/64	0.7344	18.6531
1/4	0.2500	6.3500	3/4	0.7500	19.0500
17/64	0.2656	6.7469	49/64	0.7656	19.4469
9/32	0.2813	7.1438	25/32	0.7813	19.8438
19/64	0.2969	7.5406	51/64	0.7969	20.2406
5/16	0.3125	7.9375	13/16	0.8125	20.6375
21/64	0.3281	8.3344	53/64	0.8281	21.0344
11/32	0.3438	8.7313	27/32	0.8438	21.4313
23/64	0.3594	9.1281	55/64	0.8594	21.8281
3/8	0.3750	9.5250	7/8	0.8750	22.2250
25/64	0.3906	9.9219	57/64	0.8906	22.6219
13/32	0.4063	10.3188	29/32	0.9063	23.0188
27/64	0.4219	10.7156	59/64	0.9219	23.4156
7/16	0.4375	11.1125	15/16	0.9375	23.8125
29/64	0.4531	11.5094	61/64	0.9531	24.2094
15/32	0.4688	11.9063	31/32	0.9688	24.6063
31/64	0.4844	12.3031	63/64	0.9844	25.0031
1/2	0.5000	12.7000	1"	1.0000	25.4000

WORKABILITY CHARACTERISTICS

14 12	ATLAS/AISI TYPES—300 SERIES									
OPERATION	303	304	304L	309	3095	310	310S	316	316L	317
Blanking	÷	ß	В	В	В	B	B	В	В	В
Brake Forming	-	A	A	A	A	A	A	A	A	A
Brazing	D	В	В	8	8	В	В	B	В	В
Buffing	D	A-B	8	8	B	8	В	В	B	8
Coining	D	8	8	В	B	B	B	B	B	B
Deep Drawing		A	A	В	В	ß	B	B	B	6
Drilling	A	C	Ç-	C	C	C	C	C	C	С
Embossing	С	в	B -	8	В	B	В	B	B	В
Forging-Cold	D	В	В	B-C	B-C	B-C	8-C	В	D	D
Forging-Hot	B	В	В	B	В	В	В	В	В	8-C
Hardening by Cold Work - Relative Uf	timate	Tensile	Strength	s. (Typ	ical Valu	les for	Strip Pr	oducts)	8	L
a. Annealed 1000 psi	-	84	81	95	95	95	95	84	-	90
b. 25% Reduction 1000 psi	-	138	140	130	130	126	126	136		134
c. 50% Reduction 1000 psi	5	178	182	169	169	165	165	167	-	165
Hardening by Heat Treatment	No	No	No	No	No	No	No	No	No	No
Heading-Cold	D	B	8	•		A-B	A-B	В	В	
Heading-Hot	B	A	A	-		A	A	A	A	
Machining	A	С	C	C	C	C	C	Ç	C	C
Machinability Rating % B1212	78	49	49				-	48	48	-
Magnetic	Not	No†	Not	Not	No†	Nott	Nott	Nott	Not	Nott
Punching	2	ß	B	В	В	8	B	B	В	B
Polishing D	A	Α	8	B	В	B	B	B	B	
Roll-Forming	9 5 2	A	A	8	B	A	A	A	A	В
Sawing	A	С	C	C	C	C	C	C	C	С
Shearing	С	В	B	В	8	B	В	B	B	B
Spinning		B-C	B-C	В	в	8	8	B	B	6

A-Excellent 8-Good C-Fair D-Not generally recommended

*-Severe sharp corner bends should be avoided *Sections

WORKABILITY CHARACTERISTICS

						ATL	AS/AISE	TYPES	—400 S	ERIES				
317L	321	347	403	409	410	416MX	416MN	428	430	430F	431	436	440C	446
В	В	В	Α	Α	A	120	-	ß	A	-	1	A	-	A
A	A	A	A.	A.	A*	-	-	C*	A.	1-	2	A*	121	A*
B	B	В	B	B	6	D	D	C	B	D	C	B	C	D
B	C	C	B	В	В	0	D	B	A	D	B	A	в	C-D
B	C	C	A	A	A	D	D	C-D	A	D	C-D	A-B	D	В
В	В	В	A	A	A		- 73 - 1	D	A-B	-	D	A-B	122	B-C
C	C	С	A-B	A-B	A-B	A	A	C	A-8	A	C	A-8	C	В
8	B	В	A	A	A	C	C	D	A	C	D	A	D	В
D	B	В	В	В	В	۵	D	D	В	D	D	B	D	
8-C	В	В	В	В	В	B	B	8	В	B	8	B	В	5
-	90	95	-	-	-	1.	-	•	75	1.	-	77	121	80
-	136	136	-	-	-	1.	121	4	76		2	100	121	-
-	167	167		-		-	8 2 0	•	120	-	2	125		-
No	No	No	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No
•	B	в	A	-	A	D	D	C	A	D	C	A	D	
-	A	A	A	-	A	B	В	A	A	B	A	A	B	-
C	C	С	8	В	B	A	A	C	B	A	B	В	C	В
	•	•	-	0 - 0	59	90	85	53	60	87	49	•	40	-
Not	Not	Not	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
B	В	B	A-B	A-B	A-B	•		C	A-B		С	A-B		8
В	C	CC	B	В	В	D	D	B	B	D	В	8	в	C
B	В	B	-	A	A	-			A	1020		A	1	8
C	C	C	B	B	8	A	A	C	8	A	C	B	С	B
B	B	В	В	ß	8	C	C	C	B	С	С	В	C ·	в
8	C-D	C-D	A	Α	A		- -	Ð	Α	121	В	A	i.	В

t - Develops magnetism after cold reduction tt - Develops less magnetism after cold reduction.

Description	Size	Range	Straightness	Typical Surface Finish	Applications	Standard Packaging** (Special Packaging Refer to Mill)
Hot Rolled Annealed and Pickted After hot working, product is mechanically or chemically descaled and passivated.	Rounds* .718 - 875 .876 - 1.000 1.001 - 1.125 1.125 1.375 1.501 - 2.000 2.001 - 2.500 2.601 - 9.500 3.601 - 4.500 5.501 - 6.500 6.501 - 8.250	Tolerances Pius Minus .008 .008 .009 .009 .010 .010 .011 .011 .012 .012 .014 .014 .031 .000 .046 .000 .052 .000 .078 .000 .125 .000	125" in 5 ft.	Matte gray appearance; scale pattern and surface roughness increases with bar size. Hot rolled defects not removed. Scale free.	Commonly used for corro- sion resistant, heat resistant and industrial applications where aesthetic appearance and smoothness of finish are not particularly important.	Bundled and strapped
Bar peeled up to 7" to remove scale and surface imperfections; larger sizes are lathe turned.	<u>Rounds</u> .750 - 3.499 3.500 - 5.000 5.001 - 6.750 6.751 - 18.000	.015 .000 .032 .000	.0625'' in 5 ft.	Clean, bright finish with HR detects removed. fooling marks from bar turning ap- parent even after straightening operation. Typical RMS Finish: 150-250.	Ideally suited for applica- tions involving further hot working (forging, recolling or extrusion), or where subsequent cold finishing operations are to be per- formed. Main criteria is to be free from hot working surface imperfections.	Bundled and strapped
Cold Drawn Product is descaled, pickled and cold drawn to size.	Rounds* .1253125 .313500 .501939 1.000 - 1.499 1.500 - 4.000	Tolerances Pius Minus .001 .001 .0015 .0015 .002 .002 .0025 .0025 .003 .003	.0625" in 5 ft.	Dull matte gray ap- pearance; drawing tubri- cant on surface. Typical RMS Finish: 150-250. Optional - bright drawn finish also available.	A general purpose finish used in similar applications as HRAP product: has im- proved size tolerance and surface finish over HRAP product. Bright drawn is ap- picable where finish supplied is that of the end product.	Bundled and strapped
Smooth Turned Bar turned and rough centreless ground.	Rounds .250999 1.000 - 1.499 1.500 - 3.499 3.500 - 5.000	Minus Minus .002 .002 .0025 .003 .004 .004	.0625" in 5 ft.	Clean, bright smooth finish; delect free. Typical RMS Finish: 50.	General purpose bar finish suitable for most applications.	Bundled, strapped and plastic wrapped.
Centreless Ground Cold finished by cold drawing and/or bar turning and centreless ground.	Rounds .125 .317 .318 .500 .501 .999 1.000 -1.499 1.500 -3.499 3.500 -6.750	Tolerances Plus Minus .000 .001 .000 .0015 .000 .0025 .000 .0023 .000 .003 .001 .003	.0625" in 5 lt. Pump shaft quality straightness also available.	Clean, bright smooth finish; defect free. Smoother finish then Smooth Turned. RMS Finish: 30 max. guaranteed.	Improved bar finish and tolerance over Smooth Turned. Used where the finish supplied is that of the end product; aesthelic ap- pearance is important.	Bundled, strapped and plastic wrapped.
Centreless Ground and Pollated Cold finished by cold draw- ing and/or bar turning, followed by centrefess grinding and polishing.	Rounds .125317 .318500 .501999 1.000 - 1.499 1.000 - 3.499 3.500 - 6.750	Tolerances Plus Minus .000 .001 .000 .0015 .000 .0025 .000 .0026 .000 .003 .001 .003	.0625" in 5 ft. Pump shaft quaity straightness also available.	Clean, bright reflective smooth surface; defect free, RMS Finish: 20 max. guaranteed.	This superior finish is employed where the final surface appearance is critical.	Ringed, bundled, strapped and plastic wrapped.

STAINLESS STEEL FINISHES

	Subr	tence	Con	dition				Туре	
			Strength	°F	°C	316	302/304	430	410
Aontale	lebude		1000	1140	~•				
Acetic	Acid		100% 5-≹0%	142	61 20	A	A	-	8
"			5-10%	Boiling	20	Â	Ä	Â	в
			20%	70	20	Â	Â	Ă	c
			20%		20			. A	U
				Boiling		A	A	10 ST	c
		·····	33-1/3%	70	20	A	A	A	С
			33-1/3%	Boiling		A	8	C	100
		•••••••	50%	70	20	Α	A	A	С
			50%	Boiling		A	8	(, _))	-
			80%	70	20	A	A	A C C	32-36
			80%	180	85	A	A	С	ī c
			80%	Boiling	1.12	8	B	С	
		••••••	100%	70	20	A	A	A	С
			100%	180	85	Â	A	c	
			100%	Boiling		С	С	С	<u></u>
			100% 150#	10000	0-17121	28.575			
			pressure	200	95	С	· C	-	31 <u></u> 31
			100% 150#	and the second second	25 1497-15824				
			pressure	400	205	С	С		1
Acetic /	Anhydride .		90%	70	20	Α	A	в	-
18			90%	Boiling		A	в	ē	-
**		·····	90% Aerated	180	85	в	C	1000	87 <u></u> 20
			60%	180	85	Ă	Ā	_	0 0 80
cetic \	Vapours		30%	70	20	Ā	Ā		
			30%	Hot	20	В	8	, B A	· ·
	"		100%	70	20	6	8	1	~
			100%		20	AB	2	2	Ç
coton	•		100/2	Hot 70	20	Ă	CA	~	
					20	Ä	Â	-0	B.
onton	henone		66%	Boiling	100	2	. A	2.000	C
ACCTOP	Chloride		00%	302	150	A 8	AB		2 . —3
iceryi i	uniortae			70	20	8	в	1.0	
				Boiling	-	8	в		
ACELVIE	ne	<u>.</u>		70	20	A	A	A	в
ACTANC	Acia		96%	77	25	A	A	1000	8 <u>8</u> -29
CUVINE			Aqueous Solution	70	20	A	A	-	
Aconol	ETDA1	••••••		70	20	A	A	A A A B C	в
		•••••••••		Boiling	10000	A	A	A	
AICONOL	metnyi			70	20	A B	A	A	A
				150	65	8	В	в	A C
likator	m Anestnes	ia		70	20	A	A	С	C
			20%	Boiling		A C A	A C A	c	2 4)
lumint	m		Molten	1380	750	¢	С	С	С
แกแม	im Acetate		Saturated	70	20	А	A	-	
			Saturated	Boiling	10.00	A C C C B	A		-
uuminu	im Chloride		5%	70 70	20	С	С	C	С
			10-25%	70	20	C	С	С	-
"			Saturated	70	20	Ċ	С	С	С
luminu	im Fluoride		5%	70	20	B	č	ć	ē
"	"		Saturated	70	20 20	в	ACCCCCA	č	10 00 000
luminu	m Hydroxi	de	Saturated	70 .	20	Ā	Ă		
luminu	m Potassiu	im Sulphate	nen (KREDING) (LSI) PRINTS Inscribeli	6-6554 12 2720-8	1721 Text	100	10.00	1996	
north North State		(Alum)	2%	70	20	A	A	Α	B
.,			10%	70	20	A	A	В	<u> </u>
	n		10%	Boiling	100000	A	A	B	-
		. **	Saturated	70	20	A	8	BCC	1 0 0 0 m []
"	н		Saturated	Boiling	2	8	8	č	_
lumin	m Sulphat	e	5%	150	65	Ā	Ă		-
**			5% 10%	70	20	Â	Â	0000	C
			10%	Boiling		Â	8	č	<u> </u>
"			Saturated	70	20	Â	Δ	č	C
"	"		Saturated	Boiling		Â	A 8	č	
		(+1%H2SO4)		70	20	Â	B	~	~
"	"	(+1%Na.CO)	Saturated	70	20	2	2	1.0	
mmon	is (Anhude	(+1%Na ₂ CO ₃)	Saturated	70 70	20	A	A	AAC	B
mmon	a (Miniyan	ous)		Call	20	2	A	A	
mmon ",	dag			Cold		2	2	2	
		•••••••	All Causesth :	Hot	10	A C A	A C A	C,	
.mmon	a Liquor	••••••	All Strengths	70	20	Ą	A		
12 20			All Strengths	Boiling	1	A	A	-	12 <u>-</u>
mmon	ium Alum .		Saturated	70	20	Α	A	A	3
		tly Ammoniacal)	Saturated	200	95	A	Α		с

Legend: A—Fully Resistant B—Fairly Resistant C—Not Resistant

	Substar		Cor	dition			2 9	Туре	
	a di Cin Car		Strength	°F	°c	316	302/304	430	410
Ammonium	Bicarbo	nate	Saturated	70	20	A	A	1000	2
			Saturated	Hot		A	Å	. 	
Ammonium	Bromide		5%	70	20	8	CB	1 	<u></u>
Ammonium	Carboo	ate	Saturated 1 and 5%	70 70	20	A	Å	~	
"	N		Saturated	70	20 20	Ä	â	2	B B
Ammonium	Chloride	¥	1%	70	20 20	A	A B B B B C C B		
	**		5% 10%	70	20	Å	Β.	-	-
			10%	Boiling		A	В		
**.	·		20% 28%	Boiling	2	A	B		
	77		50%	Boiling		Ā	č	<u> </u>	-
	**		Saturated	70	20	A		(12
		de	All Strengths	70	20	A	A	A A	B
Ammonium	Monoph	osphate	Saturated	70	20	А	A	A -	8
Ammonium	NITAL	(Agitated and Aerated)	All Strengths	70	20	A	A	A	в
Ammonium	Nitrate	Aerateuj	Saturated	Boiling	20	Â	Ā	Ā	B
Ammonium	Nitrate (Dissolved in					2		-
		Conc. H ₂ SO ₄)		140	60	A	A	. 	0,
				250	120	A	A	-	~
Ammonium	Uxalate		5%	70	20 20	A	A	A	B
Ammonium	Perchia	rate	Saturated 10%	70 Boiling	20	Â	A		8
Ammonium	Persuint	hate	5%	70	20	A	A	B	в
Ammonium	Phospha	ste	5%	70	20	A	A	A	- B
			Saturated	70	20	Α	A	Α	
emmonium		Im Sulphate	Coturnsod	200	95		٨	10	С
Ammonium		y Ammoniacal) e (Agitated)	Saturated 1 and 5%	200 70	95 20	AA	A	Ā	B
Ammonium	Sulphate	e (Aerated)	1 and 5%	70	20	Â	Ā	Å	B
Ammonium	Sulphate	8	10%	70	20	A	A	<u> </u>	<u> </u>
27 14			10%	Boiling	22	A	В		-
			Saturated	70	20	Ą	A B	(, ;;	CC AB
Ammonium	Sulphon	11 5% 4 50 1	Saturated Saturated	Boiling 70	20	A	8 8	_	7
Ammonium	Sulphate	e (+ 5%H₂SO₄) e (+5%H₂SO₄)	Saturated	70	20	<u> </u>	Ĉ	_	č
Ammonium	Sulphite		Saturated	70	žŏ	Â	Ă		÷
			Saturated	Boiling	1000	A	A		
Amyl Acetat	e		Concentrated	70	20	Â	Ą	 	A
Amyl Chiorii	ue		52 52	390	200	A	A	в	
Aniline	• •••••		3%	390	200	Â	A	Ā	B
Aniline Crud	le		Concentrated	70	20 20	Ā	Â	A	<u> </u>
Aniline Hydr	ochlorid	e	5%	70	20	C	C	С	;
				70	20	A	A	-	
			Molten	1110	600	40400	40400	• • 0 0	-
Arsenic Acie	icmoniae I	ð	Saturated	70 150	20 65	Ă	· C A	<u> </u>	_
" "			¥1	225	110	-	ê		=
			3	70	20	A	Ā	A	8
						A	A	A	в
Baking Soda			Solution	70	20	A	Ä		<u> </u>
Barium Carb	onate		Solution	70	20	A	A	Ā	B
Barium Chlo	ride		5%	70	20	Α	A B	-	<u> </u>
			Saturated	70	20	A	A	-	
			Saturated	Hot 70	20	A	BA	<u>_</u>	Ā
			Saturated Saturated	Hot	20	Â	A	A	A
			Saturated	70	20	Â	Â	A	-
		nd Hops)		70	20	Ā	A		
Beet Juice				70	20	A	A	1-1	
Benzene (fro	m coal t	ar or crude oil)		70	20	A	A		B880
Jenzene (fro	m coal t	ar or crude oil)		Boiling	20	Ą	Ą	-	
		·····		70 70	20 20	A	A	A	8
				Hot	4V	Â	Δ	Â	B
Bleaching Po	owder (D)ry)		and the second		Ā	ĉ	Â	ē
Bleaching So	olution			12025	12127			1222	94245
(Contain	ing Chlo	rine)		70	20	A	в	17 <u>11-1</u> 73	22 <u></u> 2

Legend A—Fully Resistant B—Fairly Resistant C—Not Resistant

M—Complete details of service should be submitted for a recommendation on the proper grade for these substances. ••• No data available.

Substance	Con	dition				Туре	
	Strength	°F	°C	318	302/304	430	410
				8	5	1	
BloodMeat Juices	2 V 72	70	20	А	A		-
Slue Vitriol	Saturated	Boiling		Ä	Â		
Boracic Acid (Boric Acid)	5%	70	20	A	A	A	8808 CC 8888
	5%	Hot		A	ACA ACC	A	B
" " (Boric Acid)	70%	Hot		ç	ç	A C A	Ç
Borax Bordeaux Mixture	5%	Hot		A.	<u>^</u>	A	в
Bromine Gas		70	20	Â	â	~	~
Bromine Water		70 70	20	ž	ž	ž	2
Butane		70	20 20 20	Ă	A	<u> </u>	<u>~</u>
Buttermilk		70	20	A	A	CC AAAA	B
Butyl Acetate	100	1223	101053	A	Α.	A	В
Butyric Acid	5%	70	20	A	A	A	B
***************************************	5%	150	65	A	A	A	B
Butyric Acid	Saturated Saturated	70 Rolling	20	44044004444444	A A B	<u>^</u>	_
Cadmium	Moiten	Boiling 610	320	ĉ	8		
Calcium Bisulphite		Boiling	320	Ă	Č A		_
	Aqueous Solution	Bound		A.	~		
	300# pressure	390	200	В	С		-
Calcium Brine (+NaCI)		70	20	Ā	в		-
Calcium Carbonate		70	20	A	A	A	B
Calcium Chlorate	Dilute Solution	70	20	A	A	A A	1 B BCC
" " "	Dilute Solution	Hot	20	A	Ą		1.0
Calcium Chloride	Saturated 5%	70 70	20 20	A	8	776	
	Saturated	70	20	2	2	17.9	
" a	All Concentrations	Boiling	20	2	č	100	- 24
Calcium Hydroxide	5%	70	20	*****	ABBCAAABCAB	A	в
· · · ·	10%	Boiling		A	A	100	<u> </u>
" " "	20%	70	20	A	A		_
	20% 50%	Boiling		A	A		-
" "	50%	70	20	A .	B		—
	Saturated	Boiling 70	20	Å	ç	~	
Calcium Hypochlorite	2%	70	20	Â	â	AB	P.
	Saturated	70	20	Â	č	č	č
" " with 10/11							
PH (Bleach Solution)	Saturated	70/80	20/30	M	С	С	c
Calcium Sulphate	Saturated	70	20	A	Ą	A	
Camphor	C.P.	70 70	20 20	A	<u>A</u>	A B	8
R 14	C.P.	Boiling	20	Â	~	8	8
<i>"</i> "	Crude	Boiling		Â	2	8 B	B
	5%	Boiling		A	Â	2	0410
Carbonated Water				A	A	A	8
Carbonate of Soda	5%	Boiling		A	A		
	50%	Boiling		A	A	-	-
******************************	Molten	1650	900	Ç	ç	Ā	-
Carbon Bisulphide Carbon Black		70 70	20 20	40444 48440 844	A	A	B
arbon Monoxide Gas		1400	760	2	Ä	Δ	8
· · · · · · · · · · · · · · · · · · ·		1600	870	Â	Ā	ААВВ] С АС	-
arbon Tetrachloride	5-10%	70	20	в	B	B	C
a a	Pure	70	20 20	Ā	Ā	B	č
	Pure	Boiling		Α	A		
	Vap. Refluxed	Boiling		ç	ç		
arnallite	Saturated	Boiling	20	B	B	-	<u>.</u>
asein	309	70 Rolling	20	Â	<u>A</u>	1	-
austic Soda	30% 30%	Boiling Boiling		~	Å	<u> </u>	
ellulose	30/8	-oung		A	Â	_	<u> </u>
harged Water				A	Ā	<u></u>	200
hinosol (Antiseptic)	1:500	70	20	A	Ä		12.02
hloracetic Acid		70	20	Å	C	С	C
hlorate of Lime	Solution	Hot	17-11-11-11-11-11-11-11-11-11-11-11-11-1	A	A		
hlorobenzol (pure)	Concentrated	70 70	20	AAC	A	A	-
Chloric Acid	Saturated		20	ç	~~~~~~~~~~~~~	Ç	00111111101110
hlorineted Water	Saturated	212 70	100 20	Â	A	ī	7
					1		

M—Complete details of service should be submitted for a recommendation on the proper grade for these substances. — No data available.

Legand: A—Fully Resistant B—Fairly Resistant C—Not Resistant

Substance	Con	dition				Туре	
	Strength	°F	°c	316	302/304	430	410
Chlorine Gas	Dry	70	20	в			
	Moist	70	20	8	8	000	000
~ ~ ~	HIGHAL	212	20 100	č	ç	č	L.
Chlorobenzene		Boiling	100	Ă	Ă	L.	U .
Chloroform	Drv	70	20	Â		Ā	
Chlorosulfonic Acid	10%	70	20	М	A B A	2	ĉ
	Concentrated	. 70	20	A	Å	č	č
Chromic Acid	5%	70	20	A	Â	ĕ	č
	10%	70	20		А А В	Ř	č
н н н 4	10%	Boiling	5775	A 8 8	8	č	č
	50% c.p.	70	20	B	B	č	č
<i>• •</i>	50%	Boiling		B	B C	Č	Ē
Chromic Acid (Cont. SO ₅)	50% (Comm.)	70	20	8	8	C	č
The second se	50% (Comm.)	Boiling		8 C C	B C C	C	Ċ
	Saturated	70	20	C	С		80000000000
hromium Plating Bath		70	20	Α	A	100	8
Cider	C0. 10.194	70	20 20	A	A	A	8
Citric Acid	5% (Still)	70	20	A	A	A	8
и и и и	5% (Still)	150	65	A	A	A	в
	5%	Boiling		A	A	A	1.000
	76 (45# pressure)	285	140	A	в	0.00	5.
и и	10%	70	20	A	Ā	Ξ	0.000
н н	10%	Boiling	20	A	Ą		10000
n n	15% 15%	70	20	A	Ą	A	В
··· ···	25%	Boiling 70	20	Å	A	8	8
	25%	Bailing	20	Â	Ê		B
n a	50%	70	20	Â	Å	8	в
n	50%	Bailing	20	Â	Ê		В
M 4	Concentrated	70	20	Â	Ă	-	
19	Concentrated	Bailing	20	Ā	B		
Strus JuicesA	I Concentrations	Hot		A	Ă	-	
obalt Acetate		70	20	Ä	Ā	_	
oca-Cola Syrup	Pure	70	20	A	A		
offee		Boiling		A	A	A	в
opal Varnish		70	20	A	A	A	B
opperas	Dilute	Hot	100	A	A	_	
opper Acetate	Saturated	70	20	A	Α	A	
opper Carbonate	Saturated	70 70	20	Α	A	A	в
opper Carbonate (+50%NH,OH)	Saturated	70	20	A	A	A	
opper Chloride	1%	70	20	A C A	A C B	С	C
opper Chloride (Agitated)	1%	70	20	A	8	ACBBCCCA	в
opper Chloride (Aerated)	1%	70	20	A B	B C C C A	в	8
opper Chloride (Agitated)	5%	70	20	B	8	B	8
opper Chloride (Aerated)	5%	70	20	C	ç	C	C
opper Chlonde	10%	Boiling	20	000	Ç	C	C
anner Cuenide	Saturated	70 70	20	ç	ç	C	C
opper Cyanide	Saturated		20	A	Ą	A	000000000000000000000000000000000000000
opper Nitrate	Saturated 1 and 5%	Boiling 70	20	A	A	A	B
	50%		20	A	A	A	8
·· ··	Saturated	Hot 70	20	Â	Â	Ā	1
opper Sulphate	5% (Still)	70	20	Â	Ă	Â	8 8
	5% (Aerated)		20	Â	Â	Â	. 8
Ser	10%	70	20	Ā	Â	Â	B
	Saturated	Boiling	100	Â	Ā	Â	B
opper Sulphate (+2%H ₂ SO ₄)	Saturated	70	20	Ä	Â	A B	B
reosote (Coal Tar)		Hot		Ā	Ā	<u> </u>	-
reosote (Qil)		Hot	22	A	A		-
reosote (+3% Salt)				Ċ	ĉ	С	C
resylic Acid		Up to					
		Boiling		A	A	A	-
yanogen Gas		70	20	Ä	Ä	-	-
		10.0					10.00
etergents		100 M 10	12.2	Α	A	A	А
eveloping Solutions		70	20	A	в		1000
chloro-Ethane		Boiling	100	A	A		1000
gestor Acid (Pulp Paper Ind.)		70	20	M	M	C	-
nitrochlorbenzol (melted and							
		70	20	A	A	A	
solidified)							
solidified) stillery Wort utch Liquor		70 70	20	Â	A	-	_

Legend A—Fully Resistant B—Fairly Resistant C—Not Resistant

M—Complete details of service should be submitted for a recommendation on the proper grade for these substances
 No data available

Substance	Con	dition				Туре	
	Strength	°F	°c	316	302/304	430	410
Dyes		70	20	A	8		
Dyewood Liquor		70	20 20	Â	Å	_	10000
Epsom Salt Solution		Hot or		,,			
C .4.		Cold		А	A	A	-
Ether		70	20	A	A	Α	в
Ethyl Acetate	All Concentrations		20	A	A	Α	
Ethylene Chloride		70	20	Ą	A	Α	в
Ethylene Glycol	Concentrated	70 70	20	A	A	Ā	8
tan G sanwara M SEDARDon (1982)	1000 000 000 000 000 000 000 000 000 00	2,577.54	1000				0
Fatty Acid (Olein)	Alf	350	175	A	В	-	(<u></u>)
Ferric Chloride	1%	350 70	175 20	A B	A	÷	—
" "	1%	Boiling.	20	8	č	~	0-0
0 //	5%	70	20	B	400000	სიიიი	{0000
Ferric Chloride (Agitated)	5%	70 70	20	B	č	č	č
Ferric Chloride (Aerated)	5%	70	20	ē	č	č	č
Ferric Chloride	10%	70	20	B	č	č	č
Ferric Hydroxide (Hydrated Iron		000		8			
Oxide)	t and EW	70	20	Ą	A	A	в
Ferric Nitrate	1 and 5%	70	20 20	A	A	A	В
Ferric Sulphate	Saturated 1 and 5%	70 70	20	A	A	A	B
AND IN A REAL PROPERTY OF THE PARTY OF THE P	1%	Boiling	20	Ă	A	A A	B
N N	Saturated	70	20	Â	Ã	Â	В
	5%	Boiling		A	A A A		_
Ferrous Sulphate	10%	70	20	A	A	Ā	в
" " " "	5%	70	20	A	Â	A	B
diserter and a second s	10%	Boiling		A	A		-
Fertilizers	Saturated	70 70	20	A	A	Α	в
Fluorine Gas		70	20 20	A C B	A B C C	A C	7
luosilicic Acid	90%	70	20	Å	č	•	С
ood Pastes	/0	70	20	A	Ă	Ā	в
formalin (40% solution		208700	171703	1000	•		
Formaldehyde)	40%	70	20	A	А	A	в
ormaldehyde (Formalin,		70		28		51 CT	523
"Methanol)		70 Boiling	20	A	A	A	8
ormic Acid	1%	70 ⁸	20	A	A	A	8
	1%	100	40	Â	Â	6	_
• • •	1%	Boiling		A	Â	č	_
	5%	70	20	AA	A	-	_
	5%	150	65	A	в	84 54 8	
<i>" "</i>	10%	70	20	A	. A	0.000	
ta rf	10%	100	40	A	Â	.	
0 0	10%	Boiling	85	ĉ	u c	—	
и и .	50%	70	20	Ă	č		1
n n	50%	100	40	Â	č	222	
" " "	50%	180	85	A	č	200	
	50%	Boiling		A C A	ć	s <u></u> s	
***************************************	Saturated	70	20	A	Ċ		cm
ruit Juices		70	20	A	ACCBCCCCAA	A	в
uel Oil	20	Hot	200	A	A	400) 444	в
	19. ¹	70 Hot	20	Â	A	A	в
" " (Containing Sulphuric		not		A	-		-
Acid)		70	20	Α	в	-	
2000 B 200				10	1	2073-53 54	-
allic Acid	5%	70	20	A	A	Α	8
<i>n n</i>	5%	150	65	A	A	A B A A	8
**	Saturated	70 Poiling	20	A	A	A	
asoline	Saturated	Boiling 70	20	A	A	8	8 8
elatine		10	20	Â	Â	Â	B
lauber's Salt		70	20	Â	2	A	в
lue (Dry)		70	20	Â	A	A	_
lue		Hot		A	A	-	
lue (Solution Acid)	i ()	70	20	A	в		
<i>" " "</i>		140	60 20	A	B	—	в
lycerine		70					

95

Legend: A-Fully Resistant B-Fairly Resistant C-Not Resistant

M-Complete details of service should be submitted for a recommendation on the proper grade for these substances. No data available.

96

Substan		Con	dition				Туре	
		Strength	°F	°C	316	302/304	430	410
Gold Cyanide Electro	plating		10202	110110				
Cup Cotton Drine UM	Solution		70 70	20	Ą	Ą	S S	
Gun Cotton Brine (Wi Gypsum	aste Acius)		/0	20	A	A	_	
Hops			70	20		Â		
Hydrobromic Acid		Saturated	70	20	ACBCC	6	1000000	000000
Hydrochloric Acid		1% or less	70	20	š	с с с	č	č
		1% or less	140	60	Ĉ	Ĉ	Č	č
" "		1% or less	Boiling		ç	ç	ç	Ç
		10% 10%	70 Boiling	20	č	č	ç.	ç
		Higher	All					C
		Concentrations	Temper-					
		10 10 100 PRESERVED	atures	0.000	С	С	С	C
Hydrochioric Acid Var			70	20	8	c	Ç	C
			212	100		00004000048	OCCCC CCC BB	00000000m
Hydrocyanic Acid (Pri			930 70	498 20	L A	L A	č	L C
Hydrofluoric Acid		All Concentrations	70	20	ĉ	ĉ	č	č
Hydrofluoric Acid Vap	OURS	in ooneentrotions	212	100	č	č	č	č
ydrofluosilicic Acid .			70	20	č	č	č	č
tydrofluosilicic Acid V	apours		212	100	С	C	Ċ	Ĉ
lýdrogen Peroxide (A lydrogen Peroxide	cid Free)		70	20	A	A	в	Ð
Tydrogen Peroxide Tydrogen Sulphide	·····	Dwg	Bailing	20	A	BA		
Tydrogen Sulpince	***************	Dry Wet	70 70	20	Â	ê	AB	10000
	••••••	**=1	to 400	to 205	Â	8	.	_
lyposulphate of Soda		Dilute	Hot		Â	Ă	-	10000
Typosulphate Soda (H	ypo.)	1	70	20	A	A	в	
			70	20	А		в	
nk odine		Dry	70	20		Â	ĉ	BCC
VUINE		Moist	70	20	A B	CCB	cc	č
odoform,			70	20	A	B	<u>~</u>	Ľ
ron Gall Ink			70	20	A	Ā	1 <u>111</u> 11	-
lam (Marmalade, Etc.)		70	20	А	A	A	_
(erosene			70	20	A	Α	А	-
(etchup			70	20	A	Α	A	8
actic Acid		5%	70	20	A	AB	в	BCC -
*************		5%	150	65	A	B	в	С
		5%	180	85	A	в	B C C +	22-25
	•••••	5% 10%	Boiling 150	65	A B B	BCC	C	
		10%	Boiling	00	R	č		_
		20%	70	20	Ă	-		2
		20%	Boiling		A B			_
		50%	70	20	A	Α	8	
		50%	100	40	A	B	С	<u> </u>
	•••••	50%	140	60	A B	ç		
		50% 100%	Boiling 70	20	BA	C	T	-
		100%	100	40	Â	Â	ĉ	B
		100%	180	85	Ë	č	<u> </u>	_
actic Acid (+Salt)		100%	70	20	Α	ABCCABCB	- BC BC 4 4 B	
ard		-	70	20	A	Ă	Α	-
"		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hot		A	A	A	-
.ead		Molten	1110	600	B	В	B	С
ead Acetate		Saturated Saturated	70 Hot	20	A	A	A	в
emon Juice		Saturated	70	20	Ă	Â	Â	
inseed Oil			70 and	20	~	~	~	1955
			Hot	200	A	A	A	в
inseed Oil (+3% H₂So .ysol	·····		390 70	200 20	A	A	c	c
.ysui		30%	Boiling	24	Â	Ă	<u>~</u>	-
		10000000						
•		Saturated						
Aagnesium Carbonate		Saturated 1 and 5%	70 70	20	A	8	Â	Â
Aagnesium Carbonate Aagnesium Chloride		Saturated 1 and 5% 1 and 5%	70 70 Hot	20	A A B	8 A B	B	8

Legend: A—Fully Resistant B—Fairly Resistant C—Not Resistant

M-Complete details of service should be submitted for a recommendation on the proper grade for these substances. No data svaliable.

	Substance	C	ondition			÷	Түре	
		Strength	°F	°c	316	302/304	430	410
	Hydroxide	TE 1.1	70		2,0190			
		Thick	70	20	Ą	A	A	8
viagneaum	Nitrate	Saturated	70	20	A	A	A	
viagnesium	Oxychloride	72228	70	20	8	8		
Magnesium	Sulphate	5%	Hot		A	A	A	CCCBC B B
	************************	Saturated	70	50	А	A	. A	ř
	*************************	Saturated	Hot	(25%)(36)	A	A	A	č
Malic Acid .		5%	70	20	A .	Â	Â	ž
		Saturated	70	20	A A	â	2	8
Asocianese	Chloride	10%	Boiling	20	ê	~	в	C
	"	50%	Boiling		2	B		8 7 8
Aanoanese !	Sulphate	V V/0	abiling		8	В		(—);
Aavonnaise			70 ⁻ 70	20	Ą	A	A B	
				20	A	A	8	8
			70	20	A	A		
nasn	•••••••••••••••••••••••••••••		Hot		A	Δ	_	-
neats			70	20	A	Â	Ā	P
fercuric Ch	loride	0.1%	70	20	A	Δ	_	
		0.1%	Boiling	0.000	A	~		
	· Constant and a second second	0.7%	70	20	B	6	1000	_
	"	0.7%	Boiling	20	2	2		-
		2.0%		10	ç	L L		-
Aercuric Cur	anide	2.0%	70	20	B	C	1111	-
		F			A	A B C C A A A A A A A A		- - - -
	litrate	Saturated	70	20	A	A	A	B
vercury			70	20	A	A	Α	B
nethanol (M	ethyl Alcohol)		70	20	A	A	Δ	
Aethyl Aldeh	iyde	40%	70	20 20	Ä	A		
lethyl Chlor	ide		70	20	A		55-52	200
Aethylene Cl	hloride		Boiling		Â	7		
Ailk (Fresh c	or Sour)		70	20	Â	Ä		=
	a		Hot	20	Â	Â	<u>A</u>	
Aine Water ((Acid)		70	20	Ä	Ă	A	8
	S(% BY WEIGHT): 2 SO4 + 50% Conc.							
	HNO ₃		120-140	£0.00		1227		
				50.60	A	A	-	
OV Cose H	FO 1 FOR Car		190-200	90.95	в	8	-	50 SC
O/a CONC. H	2504 + 50% Conc.		Boiling					
	HNO ₃		480	250	8	в	-	-
5% Conc. H	SO + 25% Conc							
843	HNO,		120-140	50-60	A	A	1223	
			190-200	90.95	B	8		
· · · ·			Boiling	5000	0	0	-	1000
			310	154	~	-		
0% Conc H.	SO4 + 20% Water		100 140	154	C	С		-
1000 E			120-140	50-60	A	A	-	100
	a "		190-200	90-95	в	8		<u>188</u>
			Boiling		2000			
	00 J 50 5		300	150	C	С	-	1000
all Couc. H	SO4 + 5% Conc.					-		-
110 Sec.	HNO ₃ + 80% Water		120-140	50-60	A	A	-	100
	 Material Science and American Science Material Science and American Science 		190-200	90-95	Ä	Â	-	
- 04 - C								-
5% Conc. H ₂	SO ₄ + 5% Conc. HNO ₃ + 80% Water							
	HNO ₃ + 80% Water		8oiling					
			220	104	A	А		
1% H2SO. +	5% HNO3		203	95	Â		-	
1994 B	# fa		230	110		Ą	-	
3% H.SO. +	40% HNO3				A	Ą	-	1000
			140	60	A	A	-	
	* # * *		203	95	ĉ	A C A	-	_
% H SO +	10% HNO		230	1.10	c	С	-	
12 12004 T	10% HNO3		140	60	A	A	-	
			203	95	A	A		
10 H23U4 +	55% HNU3		Boiling		A	A		
70 M2SU4 +	99% HNO3		Boiling		Â	Â	x	0.000
			196312733308 0			· · ·	90.00 M	
Nasses	·····		70	20	A	Α ·	A	8
olybdic Acid			70	20	A	Â	~	•
oncethanola	mine		Up to	Up to	~	-	19 11 1	
	8		212	100		100		
riatic Acid .			70	20	A	A	-	
stard			70	20 20	ç	C 8	C	С
obtha				20	A	8	B	С
ohtha Crude			70	20	Α	А	A	ССВ
اللالان الما المانية الم	e ulphonic Acid		70 70	20 20	A	A		_
abthalana C					A	A		

Legend: A—Fuily Resistant B—Fairly Resistant C—Not Resistant

M — Complete details of service should be submitted for a recommendation on the proper grade for these substances. No date available

Substance	Cond	lition	223208-7		640 - 620	Туре	
Substance	Strength	°F	°C	316	302/304	430	410
Nickel Chloride	Saturated	70	20	A	8	-	-
Nickel Nitrate	Saturated	70	20	A	Ā	A	В
A		Soiling	0.000	A	A	<u> </u>	
Nickel Sulphate	Saturated	70	20	A	Α		-
4 7	Saturated	Hot		A	A	8 75	
Nickel Sulphate (Electroplating			22				
Solution)		70	20	A	A		
Niter Cake	Fused	70	20	A	в	в	
Nitrating Acids		70	20	A A A	A	A	-
Nitric Acid	5%	70	20	A	A	A	
	5% 20%	Boiling		A	Å	Â	-
	20%	70	20	Å	Â	A	А
	20%	Boiling	20	Â	Â	~	~
***************************************	50%	70 Reiling	20	Ä	Â	A 8	
* *	50%	Boiling		ê	B	8	. c
	65% Concentrated	Boiling 70	20	Ā	Å	Ă	Ă
	Concentrated	Boiling		8	Ê	Â	Â
Nitric Acid (10% + Barium	CONCENTIALED	Sound				-	-
Nitrate - 17%)		Boiling		A	A		
Nitrie Acid 1 + 10% Pot Nitratel	Fuming	Boiling		B	B		<u></u>
Nitric Acid (+ 10% Pot. Nitrate) Nitric Acid (+ 10% Al Nitrate)	Furning	Boiling		B	Ĕ		
	Concentrated	70	20	-	Ă	С	С
Nitric Acid (+ 2% HCL) Nitric Acid	Concentrated-	· •	- - v				
	Furning	70	20	A	A		-
	Concentrated-	10.000	2000 1000				
	Furning	Boiling		C	C		-
Nitrous Acid	5%	70	20	A	A	A	-
<i>n n</i>	Concentrated	70	20	A	A	Α	A
		50 Stores					
Oils-Crude (Asphalt and		70	20			А	10-0
Paraffin Base)		70	20	A	Â	Ă	125-12
		Hot	20	Â	7	Â	
Oils-Lubricating		70	20	Â		Â	~
Other Manual Manual		Hot	20	Â	Ā	2	4
Oits-Vegetable and Mineral		70 Hot	20	Â	2	A	2
Oleia Anid	Concentrated	Hot 70	20	Â	Σ	4	ទ
Olgic Acid	Concentrated	200	95	A	A	A	B
Oxalic Acid	2%%	70	20	A	A	AABCCBB	
<i>u</i> "	2½% 2½%	180	85	ACAAABBB	С	С	_
w w	21/2%	Boiling		C	С	С	-
	5%	70	20	A	A	B	В
и и	5%	Hot		A	A		В
	10%	70	20	A	A	-	-
и и <u></u>	10%	Boiling		в	C	<u> </u>	
• • •	25%	Boiling		8	C	<u> </u>	-
64 H	50%	Boiling		8	B	<u> </u>	- 7
» "	Saturated	70	20	A	B.	00	c
<i>• •</i>	Saturated	140	60	A B C	С	С	4 4 4 8 8 8 8 C
и и	Saturated	Boiling		C	-	-	-
Palmitic Acid	2	212	100	А	A	A	<u></u>
H		300	150	Â	A	9	A A B C A A A A A B B
Paraffin		70	20	Â	Ā	A	A
r ar ai lisi		Hot	1.1.1.1.1.1.1	A	A	A	A
Paregoric Compound		and a second second		A A C A A A	4 4 C 4 4	2011	8
Perchloric Acid		70	20	C	С	С	с
Peroxide of Hydrogen		70	20	· A	A		
Petroleum				A	A	-	-
Petroleum Ether		1277000		A	A A A	A	Ą
Phenol C	P +10% Water	Boiling		Ą	A	A	A
Phenol	CP	70 and		A	Ą	· -	
		Boiling	20	A.	<u>A</u>	A	Ŷ
"	Crude	212	100	Ą	Â	A A A	A
	Crude	Boiling	20	Â	A.	A	Å
• · · · · • • • • • •	Commercial	70	20	*	Â	<u> </u>	
Phosphoric Acid	1% 1%		20	Å	Â	10-0	2.0
Dharahan'a Asid (45#Dreenver)	1%	8oiling 280	140	~~~~~	Â	8	P
Phosphoric Acid (45#Pressure) Phosphoric Acid	176	280	20	2	Â	B	R
Phosphoric Acid	10%	70	20 20	Â	Â	č	B
					~		

Legend: A-Fully Resistant 8-Fairly Resistant C-Not Resistant

M--Complete details of service should be submitted for a recommendation on the proper grade for these substances. No data available.

	Subștai	~~	Con	dition				Туре	
•••			Strength	°F	°C	316	302/304	430	410
Phosohoric	Acid (Ac	itated)	10%	70	20	A	в	•	
Phosoboric	Acid (As	itated) rated)	10%	70	20	Ä		С	С
Phosphoric	Acid		10%	Boiling	20	Â	8	-	
"	"·····		200	Bouing			A		
				140	60	A	A		
		••••••		230	110	в	C		
20 ⁶ 8	*****		Saturated	70	20	A	A	C	
Phosphoric.	Anhydric	je	Dry	70	20	A	A		1.000
			Moist	70	20	4	Ä	_	1 100
Phosphorus	Trichlor	ide	Saturated	70	20	Ā	Â		· _
Photographi	c Develo	pers	eura aroa	70	2ŏ	Â	Ê	<u>.</u>	-
Picric Arid		- 	Concentrated	70	20	÷			100
Pineanole II	lice		Concentrated	70	20	2	A.	A	A
Pine Tar Oil					20	A	Â	100	
Plaster of Or	**********	••••••		70	20	Α.	A	1000	
PRISTER OF PA	ariş			101848600		A	A		
Potable Wat	er		1007 00000	70	20	A A A A A A A A A A A A A A A A A A A	A	A	в
Potash			Solution	Hot	5673.7	A	A		
Potassium B	lichroma	te	5%	Boiling		Δ.	Â	A	в
			25%	Boiling		Â	Â	<u> </u>	
<i>n</i> .			Saturated	70	20	Â	2		
Potassium B	itartrate				20	A	A B	A	A
			Saturated	Boiling		BA	8	-	
Juassium B			5%	70	20	A	B	В	
			Saturated	70	20	A A A A A A	8		
Potassium C	arbonate		All Concentrations	70	20	A	A	A	8
	100		All Concentrations	Hot		A	A		
Potassium C	hlorate .		Saturated	70	20	4	Â	Ā	В
"			Saturated	Hot	÷.4	2	Ā	~	D
Potassium C	hioride		1 and 5%	70	20	Â	â	100	
"	<i>"</i>				20	~	A	A	в
	61	••••••••••••••••••••	1 and 5%	Boiling		A	A		
			Saturated	70	20	A	Å	8	B
Potassium C	yanide		Saturated	70	20	A	A	A	в
Potassium D	ichroma	te	25%	Boiling		A	A	A	A
10 M 10 10 10 10 10	.,		5%	Boiling		A	A	Ă	Ä
Potassium Fr	errocvan	ide	5%	70	20	Â	Â		-
			25%	70	20	Â	2	A	-
		***********			20		Ą	2.4 <u></u>	-
"			25%	Boiling		A	A	~ _ `	8
74	"	***************	Saturated	70	20	A	A	A	A
		**************	Saturated	Boiling	1.000 400 1996 (1.00	Α	A	A	A
otassium H	yorate		Saturated	70	20	A	A	A	A
otassium H	ydroxide		All strengths up		10			25	2452
			to 25%	70	20	Α	A	A	A
"	"			Boiling		A	A	Ä	
"	.,		27%	Boiling		Â	7		10000
	*		50%				AB		
	н			Boiling	000	A		2 .	1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
ataalum !!			Melting	680	360	A	A	10,000	
wassium H	ypocnior	ite	Saturated	70	20	A	8	a 0	0.000
	120	·····	Saturated	and the second second				10	
			PH 10-11	70-80	20-30	M	С	-	
otassium lo	dide	•••••	Saturated	70	20	A	Ā	.	в
otassium Ni	trate	·····	1 and 5%	70	20	A	Ă	Ā	8
"	**		1 and 5%	Hot	- 200	Â	Â	<u> </u>	•
rr			Saturated	70	20	Â	2	8 . <u>.</u> .	-
						Ŷ.	A	A	8
otoesium O-	alat-		Melting	1020	550	A	Ą	-	—
orassium Ox	(dt318		Saturated	70	20	A	A	. A	
otassium Pe	гталда	ate	5%	70	20	Α	A	A	-
			5%	Boiling		A	A	-	
			Saturated	70	20	A	A	A	4
"			Saturated	Boiling		A	Â	-	-
otassium Su	Iphate		1 and 5%	70	20	Â	Â	Ā	В
"			1 and 5%	Hot	20	· 7	Â	~	•
**			Contractor		20	AA	Ą	-	
			Saturated	70	20	<u>A</u>	A	A	8
olassium Su	ipniae		Salt	70	20	A	A	575 KG	-
and man	· · ·		Solution	Hot		A	A	-	-
						A	A	C A	CB
yrogallic Aci	d		Concentrated	70	20	A	Â	Ă	Ř
vroligeous A	cid		Concentrated	70	20	Â	Â	2	
unine Bisul	phate		Dry	70	20	A	8	B	С
uinine Sulph	late		Dry	70	20	A	Ă	8	ě.
			1:500	70	20	Ā	Ā	<u> </u>	e .
				10	20				-
0\$10			Molten			A	A	A	8
	~		109	Dail:		2. - 2.			
a Ammonia			10%	Boiling		A	A	A	-
			50%	Boiling		A	8		

Legend: A—Fully Resistant B—Fairly Resistant C—Not Resistant

M-Complete details of service should be submitted for a recommendation on the proper grade for these substances. No data svaliable.

	Substance	Cond	ition				Туре	
	Substance	Strength	٩٩	°C	316	302/304	430	410
			Up to	Up to				
alicylic	Acid	90%	212	100	A	A	A	8
Salt Bri	ne		70	20	A	ĉ	—	-
altpetr	re	Solution	Hot		А	Â	—	—
	raut Brine		70	20	A	С	<u></u>	C C C
	iter		70	20	M	M	С	Ç
ewage	•		70	20	Ą	B	-	
	Iromide		70	20	A	B	B	ç
	hloride		70	20	С	С	С	C
illver C	yanide		70	20	.	100	Δ	с
ilian B	Electroplating Solution	10%	70 70	20 20	A	Â	Â	B
nver is	litrate	10%	Boiling	20	Â	ĥ	_	0
	μοr	10%	Bound		Â	Å		
	100		70	20	Â	Â	A	8
	sh	10%	200	9 5	Â	Â	Ā	Ă
Jua A	\$41	50%	200	95	Â	Â	A A	Â
oda N	iter	Solution	Hot		Â	Â	-	2
	Acetate Salt	Moist	70	20	Ā	A	A	_
	Acetate	5%	70	20	Â	Ä	Ä	B
"		Saturated	70	20	A	A	-	8
iodium	Bicarbonate		70	20	A	A	А	B
	"	5%	150	65	A	A	A	В
odium	Bichromate	Saturated	70	20	A	A	A	B
odium	Bisulphate	10%	70	20	A	Â	2 <u>11</u> 2	
		10%	Boiling	33043535. 81634572	A	A	_	-
"	*	Saturated	70	20	A	A A A A B A		
	Bisulphite	S.G. 1.38	70	20	A	A		-
	Borate	Saturated	70	20	A	A	A	в
odium	Bromide	Saturated	70	20 20	A	A	-	B
		5%	70	20	B	в	8	8 8 8
odium	Carbonate	All Concentrations	70	20	A	Ą	A	В
		All Concentrations	150	65	Â	Â	Â	Ë,
2 11 1		Molten	1650	840	C	ç	ç	ç
odium	Chlorate	10%	70	20	A	Ą	Ą	В
		25%	70	20	A	Ą	A	8
iodium	Chloride (Aerated)	2%	70	20 20	A	Ą	8	ç
	1 (Alasahad)	5%	70	20	AA	A 8	ä	Å,
	" (Aerated)	5%	70 70	20 20	Â	B	ž	č
	(Aeraceo)	20%	70	20	Ä	B	č	č
oojum	Chloride	Saturated Saturated	Boiling	20	Â	B	č	č
	Gitrate	Saturated	70	20	Â	2	Ă	ě
	i Citrate	Saturated 5%	70	20	2	ĀB	880000A	-
, uium	Flubrae	Saturated	70	20	AB	B		
todiu~		All Concentrations	70	20	Ä	Å	Ā	A
,ouiult		20%	230	110	Ā	Â	-	
	"	30%	Boiling		Â	A		
		50%	Soiling		Â	8	-967.025	
	····	Melting	600	315	B	BC		-
odium	Hypochlorite	5%	70	20	Ā	B	ç	BCB8C8CCCCB 4 1
	Hypochlorite (Dakin's				10.00	- 22		
	Solution)		70	20	A	в	С	С
odium	Hypochlorite (PH 10/11)	Saturated	200	95	M	С	СC	00140111
odium	Lactate	Saturated	70	20	А	A		<u> </u>
Sodium	Nitrate	All Concentrations	70	20	А	A	A B	A
		All Concentrations	Hot		Α	AB	8	С
	"	Fused	1000.000	1002	B		8	<u> </u>
	Nitrite	Saturated	70	20	A	A		-
	Perchiorate	10%	70	20	A	A		
"	"	10%	Boiling	10.000	A	A		-
iodium	Peroxide	10%	70	20	A	A		-
	"	10%	200	95	A	A	10	-
a ai	*	Saturated	212	100	A	A	A	
odium	Phosphate	5%	70	20 20	A	A	A	A
		Saturated	70	20	Ą	A	Ą	
	n Salicylate	Saturated	70	20	A	A	A	A
Sodium	Sulphate	All Concentrations	70	20	A.	Å	C	C
		5%	Hot		~~~~~	В	40000	
odium	1 Sulphide	50%	Boiling		A	A	ç	ç
**	···	5%	70	20	A	AB	CB	ç
		Saturated						

Legend: A—Fully Resistant B—Fairly Resistant C—Not Resistant

M-Complete details of service should be submitted for a recommendation on the proper grade for these substances. No data svallable.

Substance		Co		Туре					
) /	au	Deteriçe	Strength	°F	°C	316	302/304	430	410
Sodium	Sulphi	te	5%	70	20	A		~	
			10%	150	65	Â	B	CUCA	CCCB
**			50%	Boiling	05	Â	B	ž	2
			Saturated	70	20	Â	Ā	ç	ç
Sodium	Thiosu	phate	25%	70	20	Â	Â	A	8
"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		25%	Boiling	20	Â	Â	A	2000
Sodium	Thiosul	phate (+4%		Bound		~	A	~	0.00
		t. Meta Bisulphate)	Saturated	70	20	A	A		-
Sov Bea	in Oil		5%		20	7		A	8
Stannic	Chlorid	e	- 70	70	20	A B	ACCCCB	-	~
"	•7		5%	Boiling		ž	ž	ž	Š
**	~		Saturated	70	20	CCCB	č	č	2
"	"		Saturated	Boiling		ř	ž	č	2
Stannou	s Chlor	ide	5%	70	20	ă	č	č	č
	4		5%	140	60	8	B	ž	Š
**			Saturated	70	20	Ă	B	ž	Š
		de	15%	70	20	Â	8	. C	C.
Starch .				70	žŏ	2	Å		
iteam				Reference of	20	~~~~~	Â	0000000 << 88	A
Steam a	nd air r	efluxed				2	\$	A	A
steam-	CO. an	d air				2	Â	_	8
iteam-	SO. C	O ₂ and air				^	Å	5	8
tearic /	Acid		Concentrated	70	20	<u>^</u>	A.	H	B
"	~		Concentrated	200		Â	A A A A A A	Â	
trontiu	m Hydr	oxide		70	95 20	2	A	A	A
trontiu	m Nitra	te		Hot	20	A	<u>A</u>	-	-
ublamin	7		1:500	70	20	Â	<u> </u>		
		••••••••••••••••••••••••••••	1.000	70		Ą	<u>A</u>		-
					20	Ą	A	A	-
ulohur			Dry	Hot	20	A	A	Ą	2 <u>0</u> 2
			Wet	70	20	Ą	A B B A	А А В В	в
utohur	Dioxide	Gas	Moist	70	20	A B	В	B	Ç
		Gas	PHONAL		20	в	в	B	в
ulphur	Chlorid	Α		575	300	A 8	A	A	BCB
ulohure	tted H	drogen		70	20	8	-	0.00	-
ulphuri	Acid	orogen	EP	70	20	A	АВСССВССС		00000000
a private	"		5%	70	20	A	в	00000000	C
			5%	100	40	A	c	С	C
40			5%	140	60	Ă	ç	C	C
			5%	Boiling		M	C	С	C
			10%	70	20	A	B	C	С
	" "		10%	100	40	A	ç	С	C
**		•••••••••••••••••	10%	140	60	A	С	С	C
ulaboria	Anid	10	10%	Boiling		M	C	C	Ċ
erbertat.jp		+Copper	1.00	1975) 		1000			2007
utabueie	Anid (Sulphate 10%)	10%	Boiling	•3	A	A		(<u>1</u> 1)
aprono	ACID (+Ferric							
ulphucie		Sulphate 2%)	10%	Boiling		A	A	_	-
ulphuric	, vcia	•••••	15%	70	20	A	С	С	C
"			15%	100	40	M	000	CCC	č
ulaborei-		1 Datasi	15%	140	60	M	С	С	CCC
anthu na Lic	ACIO (+ Potassium		10000	1222				253
dobucie	Anid I	Dichromate 2%)	15%	70	20	A	A	10000	-
alphuric	Acia (+Copper	400		10.000				
		"Sulphate 6%)	40%	140	60	A	A	A	A
ulahuria	Anid		40%	Boiling	0202	M	ĉ		
ulphuric	ACIO		50%	70	20	BC	С	0000400 000 1 1 1	000 ×00 00
<u>,</u>		••••••••••	50%	Boiling		С	C C B B	Ċ	ć
			85%	70	20	AB	в	C	Č
**			85%	100	40	8	B	č	č
<i></i>			Concentrated	70	20	A	A	Ā	Ă
		•••••••	Concentrated	100	40	A	8	Ċ	ĉ
			Concentrated	140	60	в	8	č	č
			Concentrated	212	100	Ĉ	č	. <u> </u>	
			Concentrated	300	150	ē	č	C	c
	000		Concentrated	Boiling		č	č	č	ř
			Furning	70	20	AABCCCBB	ě	<u> </u>	<u> </u>
uphuric	Acid (1	1% Free SO ₃)	Furning	212	100	B	Ř	192213	
	. (6	0% Free SO	Furning	70	20	Ă	A B B C C C B B A A		
			Fuming	160	20 70	Â	2	1000	20-00
		us Nitrates M	any Danasticas			Â	Â	Ā	-

Legend: A—Fully Resistant B—Fairly Resistant C—Not Resistant

M—Complete details of service should be submitted for a recommendation on the proper grade for these substances. — No data svaliable.

Substance	Cont	dition		Туре			
Gabetance	Strength	°F °C		316	302/304	430	410
Sulphurous Acid	Saturated	70	20	- A	A		8
	Saturated	250	120	Â	B	BCCC []	-
" " (70-125# pressure)	Saturated	320	160	Δ.	B	č	_
(150# pressure)	Saturated	375	190	A	B	č	_
" " (200# pressure)	Saturated	390	200	AB	B	×	
" (300# pressure)	Saturated	390	200	B	B		-
" " Spray		70	20	č	Ċ		- 2 <u>-</u>
Sweet water		Hot		B C A	B C A		-
Syrup		Hot		A	A	_	_
fangic Acid	Il Concentrations	70	20	A	A	A	8 8
", ",A	II Concentrations	Boiling	10000	A	Â	A	8
anning Liquor				A	A		-
ANITH 2011 90160				M	M	C	C
ar				A	Â	-	
ar plus Ammonia in Water	8			Α	· A		-
Tartaric Acid	1%	70	20	A	A	AA C AACCACCBAAC	101110080014B1011
<i>" "</i>	1% 10%	100	40	A	4	A	
" " ·····	10%	70	20	Ä	Â	C	С
***************************************	10%	Boiling	222	A	A	Ç	Ć
***********************	Concentrated	70	20	A	A	. A	8
	Concentrated	150	65	A A C B	A B C B	C.	č
etrachloride of Tin	Saturated	Boiling		C	С	C	Č
in	Molten	1110	600	В	в	B	
itanium Tetrachloride	Saturated	70	20	A	A	Ā	A
omato Juice		70	20	A A C	A A C A A	A	B
richloracetic Acid		70	20	С	С	C	
richlorethylene		70	20	A	A		C
		Boiling		A	A	-	<u> </u>
lung Oil		70	20	A	A		
urpentine Oil		95	35	A	A		
Jric Acid	Concentrated	70	20	Α	А	A	A
	e en contratou		100.000				
Varnish		70	20	A	A	A 8 8 8 8 8	A
<i>*</i>		Hot	100.007	A	A	в	B
egetable Juices		70	20	A	A	в	BB
/inegar		Hot		A	A	B	B
rinegar		70	20	A	A A A	в	в
		Hot		A	Ą	-	-
inegar (Agitated)		70	20	A	A	A	B
/inegar (Aerated) /inegar Fumes		70	20	A	A	A 8	A
/inegar-Sauces and Pickles	2			A	в	8	10-31
finegar-Sauces and Pickles		11		A	A	A	-
/inegar-(+.5% Salt)		Up to		1	۸.		-
litriol Plus	Caturated	200		A	-	8	B
/itrio!—Blue Green	Saturated	Boiling	20	A	Ą	Ą	A
" White	Saturated	70	20	A	<u>A</u>	Ą	A
WAITE	Saturated	70	20	A	A	A	A
Vater		70	20	Α	A	A	в
		Hot		Â	Â		2
Vater Oily		70	20	Â	Â	2	BA
		Hot		Ā	2	A A A A	2
Vater Oily		Constant.		Ā	Â	Â	Å
Whiskey			122	Â	Â	2	<u> </u>
Vine				Â	2	1000	
Vood Pulp				Â	AB		
Vort			20	Ā	Ă		
							35 -3
Ray Developing Solution		23		A	в)) (
east				A	A	8 - 8	-
Linc	Molten	1110	600	Ċ	с	C	040000 1000
Zinc Chloride	5%	70	20	C 4 8 C 8 8 4 4 4 4	Ă	Ř	ă
* * <u>.</u>	5%	Boiling		8	A B C B	Ř	2
н п	10%	Boiling		č	č	ř	č
<i>и</i> и	50%	105	40	ă	Ř	č	č
* *	Saturated	70	20	Ä	č	ž	č
Zinc Cyanide	Moist	70	žŏ	Δ	Ă	-	6
Inc Nitrate	in oldt	Hot	20	~	Ω.	10-01	-10
Linc Sulphate	5%	70	20	~	~	-	-
			20	^	Ŷ.	E E	ç
"""· ·····	25% 25%	70 Boiling	20	A	C A A A A B		C
н н	2076 Saturated	70	20	Ā	B	B	5

Legend: A—Fully Resistant 8—Fairly Resistant C—Not Resistant

M—Complete details of service should be submitted for a recommendation on the proper grede for these substances. No data available.

ALUMINUM SHEET & COIL 3003-H14

	Sizes in Stock								
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft		
.020	48	96	0.288	.100	36	coil	1.440		
.025	36	coil	0.360	.100	36	96	1.440		
.025	48	coil	0.360	.100	36	120	1.440		
.025	48	96	0.360	.100	48	coil	1.440		
.025	48	120	0.360	.100	48	96	1.440		
.032	36	coil	0.460	.100	48	120	1.440		
.032	36	96	0.460	.125	36	coil	1.800		
.032	48	120	0.460	.125	36	96	1.800		
.040	48	coil	0.576	.125	36	120	1.800		
.040	48	96	0.576	.125	48	coil	1.800		
.040	48	120	0.576	.125	48	96	1.800		
.050	48	coil	0.720	.125	48	96	1.800		
.050	48	96	0.720	.125	48	120	1.800		
.050	48	120	0.720	.125	48	120	1.800		
.050	60	coil	0.720	.125	48	144	1.800		
.050	60	120	0.720	.125	48	144	1.800		
.063	36	coil	0.907	.125	60	coil	1.800		
.063	36	96	0.907	.125	60	96	1.800		
.063	36	120	0.907	.125	60	96	1.800		
.063	48	coil	0.907	.125	60	120	1.800		
.063	48	96	0.907	.125	60	120	1.800		
.063	48	120	0.907	.125	60	144	1.800		
.063	48	144	0.907	.125	60	144	1.800		
.063	60	120	0.907	.125	60	240	1.800		
.080	48	coil	1.150	.188	48	coil	2.700		
.080	48	96	1.150	.188	48	96	2.700		
.080	48	120	1.150	.188	48	120	2.700		
.080	60	coil	1.150	.188	60	96	2.700		
.080	60	120	1.150	.188	60	120	2.700		
.090	36	coil	1.300	.250	48	coil	3.600		
.090	36	96	1.300	.250	48	96	3.600		
.090	36	120	1.300	.250	48	120	3.600		
.090	48	96	1.300	.250	60	120	3.600		
.090	48	120	1.300						

ALUMINUM BRITE TREAD SHEET & COIL 3003-H22

			Sizes	in Stock			
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft
.063	48	96	0.983	.125	60	144	1.900
.063	48	120	0.983	.125	60	192	1.900
.063	60	coil	0.983	.187	48	96	2.800
.063	60	96	0.983	.187	48	192	2.800
.063	60	120	0.983	.187	48	120	2.800
.100	60	192	1.575	.187	60	120	2.800
.125	48	coil	1.900	.187	60	144	2.800
.125	48	96	1.900	.187	60	192	2.800
.125	48	120	1.900	.250	48	96	3.700
.125	48	192	1.900	.250	48	192	3.700
.125	60	coil	1.900	.250	60	192	3.700
.125	60	96	1.900				
.125	60	120	1.900				

ALUMINUM SHEET & COIL 5052-H32

Sizes in Stock							
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft
.032	48	96	0.460	.125	36	120	1.800
.032	48	120	0.460	.125	36	144	1.800
.040	48	coi	0.576	.125	48	coil	1.800
.040	48	96	0.576	.125	48	96	1.800
.040	48	120	0.576	.125	48	120	1.800
.050	36	coil	0.720	.125	48	144	1.800
.050	36	96	0.720	.125	60	coi	1.800
.050	36	120	0.720	.125	60	96	1.800
.050	48	96	0.720	.125	60	120	1.800
.050	48	120	0.720	.125	60	144	1.800
.050	60	coil	0.720	.125	72	coil	1.800
.050	60	120	0.720	.125	72	96	1.800
.050	60	144	0.720	.125	72	120	1.800
.063	48	coil	0.907	.125	72	240	1.800
.063	48	96	0.907	.125	72	288	1.800
.063	48	120	0.907	.188	48	coil	2.700
.063	60	coil	0.907	.188	48	96	2.700
.063	60	120	0.907	.188	48	120	2.700
.063	60	144	0.907	.188	60	coil	2.700
.080	48	coil	1.150	.188	60	120	2.700
.080	48	96	1.150	.188	60	144	2.700
.080	48	120	1.150	.188	60	240	2.700
.080	60	coil	1.150	.188	72	coil	2.700
.080	60	96	1.150	.188	72	240	2.700
.080	60	120	1.150	.188	72	288	2.700
.090	48	coil	1.300	.250	48	96	3.600
.090	48	96	1.300	.250	48	96	3.600
.090	48	120	1.300	.250	48	120	3.600
.100	36	120	1.440	.250	60	coil	3.600
.100	48	coil	1.440	.250	60	120	3.600
.100	48	96	1.440	.250	60	144	3.600
.100	48	120	1.440	.250	72	144	3.600
.100	60	coil	1.440	.250	72	240	3.600
.100	60	96	1.440	.375	72	288	3.600
.100	60	120	1.440	.375	48	96	5.400
.125	36	coil	1.800	.500	48	144	5.400
.125	36	96	1.800		48	96	7.200

	Sizes in Stock								
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft		
.050 .063 .090	48 48 48	144 144 144	0.73 0.92 1.29	.125 .125 .187	48 48 48	96 120 96	1.80 1.80 2.70		

ALUMINUM PLATE 6061 T6

			Sizes i	n Stock			
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft
.250 .250 .375 .375 .500 .500 .625 .625	48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5	96.5 144.5 96.5 144.5 96.5 144.5 96.5 144.5	3.60 3.60 5.40 7.20 7.20 9.00 9.00	.750 .750 1.00 1.25 1.5 2.00 2.50	48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5	96.5 144.5 96.5 144.5 144.5 144.5 144.5 144.5	10.80 10.80 14.40 14.40 18.00 21.60 28.20 35.80

Also availabla 5005 AQ & 1100-H14

ALUMINUM ROUND BAR 6061 T6

Sizes in Stock								
Diameter	Length	Est. Wt. lbs/ft	Diameter	Length	Est. Wt. Ibs/ft			
1 _{/8}	12	0.015	2.0	20	3.700			
3/16	12	0.032	2 ¹ / ₄	20	4.680			
1/4	20	0.058	2 ¹ / ₂	20	5.780			
3 _{/8}	20	0.131	2 ³ / ₄	12	7.000			
³ / ₈ 1/2 5/8 3/4 7/8	20	0.231	3.0	12	8.320			
5/8	20	0.361	31/4	12	9.790			
3 _{/4}	20	0.520	31/ ₂	12	11.300			
7/8	20	0.708	3 ³ / ₄	12	13.100			
1.0	20	0.925	4.0	12	14.800			
1 ¹ /8	20	1.170	41 _{/4}	12	16.700			
1 ¹ / ₄	20	1.450	4 ¹ / ₂	12	18.700			
1 ³ /8	20	1.750	5.0	12	23.100			
1 ¹ /2	20	2.080	5 ¹ / ₂	12	28.000			
1 ³ /₄	20	2.830	-					
.17/8	20	3.267						

ALUMINUM ROUND BAR 6061 T6 Oversize

Sizes in Stock								
Diameter	Length	Est. Wt. Ibs/sqft	Diame	ter Length	Est. Wt. Ibs/ft			
6.0	12	33.300	11	6, 12	112.000			
6 ¹ / ₂	12	39.100	12	12	133.000			
7.0	12	45.210	12 ¹ / ₂		145.720			
7 ¹ /2	12	52.000	13 -		157.600			
8.0	12	59.200	14		182.790			
9.0	12	76.340	15		209.830			
10	12	92.500	16		238.740			

108 ALUMINUM SQUARE BAR 6061 T6

			Sizes in Stock			
Diameter	Length	Est. Wt. Ibs/ft	Diameter	Length	Est. Wt. lbs/ft	
3/8	12	0.166	2.0	12	4.710	
³ /8 7/ ₁₆ 1/2 5/8 3/4	12	0,250	2 ¹ / ₂	12	7.360	
1/2	12	0.292	2 ³ / ₄ 3.0	12	8.900	
5/8	12	0.458	3.0	12	10.600	
3/4	12	0.662	3 ¹ / ₄	12	11.500	
1.0	12	1.180	3 ¹ / ₂	12	14.400	
1 ¹ /8	12	1.490	4.0	12	19.000	
1¹/₄	12	1.840	4 ¹ / ₂	12	23.750	
1 ³ /8	12	2.230	_			
1 ¹ /2	12	2.650				

Dia	me	ter	Length	Est. Wt.	Dia	me	ter	Length	Est. W
Dio			Longui	lbs/ft	Dic			Longui	lbs/ft
1 _{/8}	х	1 _{/2}	12	0.074	1 _{/2}	х	3 _{/4}	20	0.440
		³ / ₄ 1.0	12	0.110			1.0	20	0.587
		1.0	12	0.151			1 ¹ / ₂ 2.0	20	0.865
		1 ¹ / ₄ 1 ¹ / ₂	12 12	0.185 0.221			2.0 2 ¹ / ₂	20 20	1.200
		2.0	12	0.221			$\frac{2^{1}}{2^{3}}$	20	1.500 1.620
		3.0	12	0.295			3.0	20	1.760
		4.0	12	0.588			3 ¹ / ₂	20	2.050
		5.0	12	0.735			4.0	20	2.350
		5 ¹ /2	12	0.808			5.0	20	2.950
³ /16	Х	³ /4 1.0	20	0.165			6.0	20	3.550
		1.0	20	0.221	3 _{/4}	Х	1.0	20	0.882
		1 ¹ / ₄	20	0.275			$1^{1}/_{2}$	20	1.300
		1 ¹ / ₂	20	0.331			1 ⁵ /8	20	1.432
		2.0	20	0.442			2.0	20	1.750
		3.0	20	0.663			2 ¹ / ₂	20	2.200
1.		4.0	20	0.883			3.0	20	2.650
1 _{/4}	х	1/2 3/	20	0.150			3 ¹ /2	20	3.100
		³ / ₄ 1.0	20 20	0.221 0.295			4.0 5.0	20 20	3.520 4.438
		1 ¹ / ₄	20	0.368			6.0	12	5.300
		1 ¹ / ₂	20	0.442	1.0	х	1 ¹ / ₄	12	1.500
		2.0	20	0.589	1.0		1 ¹ / ₂	12	1.780
		2 ¹ / ₄	20	0.662			2.0	12	2.350
		$2^{1}/_{2}$	20	0.736			$2^{1}/_{2}$	12	2.950
		2 ³ /4	20	0.812			3.0	12	3.530
		3.0	20	0.883			4.0	12	4.700
		3 ¹ / ₂	20	1.030			5.0	12	5.918
		4.0	20	1.180			6.0	12	7.060
		5.0	20	1.470	. 1		16.0	12	18.820
3.	v	6.0	20	1.800	1 ¹ / ₂	х	2.0	12	3.600
3 _{/8}	х	1 _{/2}	20	0.220			3.0	12 12	5.300
		³ / ₄ 1.0	20 20	0.331 0.442	2.0	х	4.0 3.0	12	7.051 7.060
		1.0 1 ¹ / ₄	20	0.552	2.0	^	4.0	12	9.580
		$\frac{1}{1^{1}/2}$	20	0.661			4.0	12	0.000
		1 ¹ / ₂ 2.0	20	0.882					
		2 ¹ / ₄	20	1.000					
		2 ¹ / ₂	20	1.100					
		3.0	20	1.350					
		4.0	20	1.750					
		5.0	20	2.200					
		6.0	20	2.730					
		8.0	20	3.513					

ALUMINUM ANGLE 6061 T6

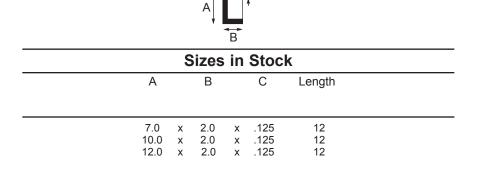
		Sizos	in Stock		
Legs	Thickness Length		Legs	Thickness Leng	th Est. Wt. Ibs/ft
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} {}^{1}{}'_{8} & 20 \\ {}^{1}{}'_{8} & 20 \\ {}^{1}{}'_{8} & 20 \\ {}^{1}{}'_{8} & 20 \\ {}^{1}{}'_{8} & 20 \\ {}^{1}{}'_{8} & 20 \end{array}$	0.207 0.280 0.421 0.340 0.420 0.566	$\begin{array}{ccccc} 2.0 & \times & 2.0 \\ 2.0 & \times & 3.0 \\ 2^{1}\!$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 1.400 1.400 1.716 1.680 2.012
$\begin{array}{ccccc} 1.0 & \times & 1.0 \\ 1^{1}{}_{/4} & \times & 1^{1}{}_{/4} \\ 1^{1}{}_{/2} & \times & 1^{1}{}_{/2} \\ 1^{1}{}_{/2} & \times & 2.0 \\ 1^{1}{}_{/2} & \times & 2.0 \\ 2.0 & \times & 2.0 \\ 2.0 & \times & 3.0 \\ 3.0 & \times & 3.0 \end{array}$	$\begin{array}{cccc} 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \\ 3_{16} & 20 \end{array}$	0.400 0.510 0.620 0.739 0.849 0.850 1.073 1.313	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 1_{/4} & 20 \\ 5_{/16} & 20 \\ 3_{/8} & 20 \\ 3_{/8} & 20 \\ 3_{/8} & 20 \\ 3_{/8} & 20 \\ 3_{/8} & 20 \\ 3_{/8} & 20 \end{array}$	 3.417 2.470 2.974 3.420 3.625
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} {}^{1}\!/_{4} & 20 \\ {}^{1}\!/_{4} & 20 \\ {}^{1}\!/_{4} & 20 \\ {}^{1}\!/_{4} & 20 \\ {}^{1}\!/_{4} & 20 \\ {}^{1}\!/_{4} & 20 \end{array}$	0.510 0.660 0.810 0.956 1.108 0.960	4.0 × 6.0	1 _{/82} 20) 5.617

ALUMINUM ANGLE 6063 T5

				Sizes i	n Stock		
Leg	S	Thickness Le	ngth	Est. Wt. Ibs/ft			
³ / ₄ x	3 _{/4}	¹ /16	20	0.106			
³ / ₄ x 1.0 x	³ /4 1/2	0	20 20	0.200 0.200			
1.0 x 1.0 x		. 10	20 20	0.399 0.623			

ALUMINUM STRUCTURAL CHANNEL

A


6061 T6

			ino	\overrightarrow{B}	Stock		
 A		B	ize	C	Stock Length	Est. Wt. Ibs/ft	
1 ¹ / ₄ 2.0 3.0	x x x	⁵ /8 1.0 1.0	x x x	1 _{/8} 1 _{/8} 1 _{/8}	20 20 20	0.329 0.566 0.702	
3.0 4.0	x x	1 ¹ / ₂ 2.0	x x	³ /16 ³ /16	20 20	1.241 2.029	
3.0 3.0 4.0 5.0 6.0 6.0	x x x x x x	$\begin{array}{c} 1^{1/2} \\ 2.0 \\ 2.0 \\ 2^{1/2} \\ 2^{1/2} \\ 2^{3/4} \end{array}$	× × × × × ×	1 _{/4} 1 _{/4} 1 _{/4} 1 _{/4} 1 _{/4} 1 _{/4}	20 20 20 20 20 20	1.841 2.180 2.520 3.574 3.497 4.048	
6.0 8.0 10.0	x x x	2.0 3.0 3.0	x x x	9 _{/32} 9 _{/32} 9 _{/32}	20 20 20	3.580 5.513 6.200	
12.0	х	4.0	х	.290	20	8.160	
10.0	х	3 ¹ / ₂	х	⁵ /16	20	7.802	
12.0	х	4	х	3 _{/8}	20	10.500	

= [★]/_∓ C

ALUMINUM SAFETY GRIP CHANNEL

6061 T6

[★]/_⋆ C

ALUMINUM STRUCTURAL TEE $A \xrightarrow{B} \frac{1}{\pi} C$

6061 T6

			A		Т		
		S	ize	s in :	Stock		_
A		В		С	Length	Est. Wt. lbs/ft	_
1 ¹ / ₂ 2.0	x x	1 ¹ / ₂ 1 ¹ / ₂	x x	³ / ₁₆ 3/ ₁₆	20 20	0.638 0.752	_
2.0	х	2.0	х	1 _{/4}	20	1.146	

ALUMINUM STRUCTURAL I BEAM

6061 T6

Sizes in Stock С Length A В Est. Wt. lbs/ft ³/16 1/4 1/4 3.089 4.0 х 3.0 х 24 6.0 3.0 20 3.948 х х 6.0 х 3.5 24 4.860 х

ALUMINUM ROUND TUBE 6061 T6

	Sizes i	n Stock		
Diameter	Wall	Length	Est. Wt. Ibs/ft	
5/0	.049	20	0.104	
5/8 3/4	.125	20	0.343	
7/8	.120	20	0.343	
7/ ₈ 1.0	.065	20	0.208	
1.0	.120	20	0.403	
1 ¹ / ₈	.125	20	0.516	
11/4	.120	20	0.504	
1 ¹ / ₂	.065	20	0.345	
1 ¹ / ₂	.125	20	0.639	
1 ¹ / ₂	.250	20	1.118	
2.0	.065	20	0.467	
2.0	.125	20	0.868	
21/2	.120	20	1.051	
3.0	.187	20	1.944	
3.0	.250	20	2.535	
3.0	.500	20	4.632	
4.0	.125	20	1.800	
6.0	.125	20	2.702	
6.0	.187	20	4.000	
6.0	.250	20	5.287	

ALUMINUM ROUND TUBE 6063 T5

Sizes in Stock						
Diameter	Wall	Length	Est. Wt. Ibs/ft			
³ / ₄	.065	20	0.167			
1 ¹ / ₈	.058	20	0.230			
1 ¹ / ₄	.058	20	0.256			
1 ¹ / ₂	.125	20	0.639			

ALUMINUM SQUARE TUBE 6061 T6 Available with square or round corners

	Sizes i	n Stock		
Diameter	Wall	Length	Est. Wt. Ibs/ft	
³ / ₄	.120	20	0.357	
1.0	.095	20	0.406	
1.0	.120	20	0.485	
1 ¹ / ₄	.095	20	0.406	
1 ¹ / ₄	.120	20	0.640	
1 ¹ / ₂	.095	20	0.631	
11 ¹ / ₂	.120	20	0.781	
2.0	.060	20	0.550	
2.0	.095	20	0.854	
2.0 2.0 2.0	.120 .187 .250 .120	20 20 20 20	1.064 1.566 1.990 1.347	
21 _{/2}	.120	20	1.547	
3.0	.120	20	1.560	
3.0	.187	24	2.490	
3.0	.250	20	3.254	
3.0 3.0 4.0 4.0	.312 .187 .250	20 20 24 20	3.755 3.239 4.307	

ALUMINUM SQUARE TUBE 6063 T5 Available with square or round corners

	Sizes i	in Stock		
Diameter	Wall	Length	Est. Wt. Ibs/ft	
1.0	.062	20	0.267	
1.0	.120	20	0.513	
1 ¹ / ₄	.125	20	0.674	
2.0	.120	20	1.057	
2.0	.187	20	1.064	

ALUMINUM RECTANGULAR TUBE 6061 T6

Available with square or round corners

	Sizes	in Stock		
Cross Se	ction Wall	Length	Est. Wt. Ibs/ft	
11/ ₂ × 2.0 × 2.0 × 2.0 ×	$\begin{array}{cccc} 2.0 & .120 \\ 3.0 & .120 \\ 2^{1/2} & .120 \\ 3.0 & .125 \\ 4.0 & .120 \\ 4.0 & .187 \end{array}$	20 20 20 20 20 20 20	1.064 1.229 1.202 1.397 1.630 2.438	

ALUMINUM RECTANGULAR TUBE 6063 T5 Available with square or round corners

		Sizes i	n Stock		
Cross	Section	Wall	Length	Est. Wt. Ibs/ft	
1.0	× 1 ¹ / ₂	.095	20	0.625	
1.0	× 2.0	.095	20	0.634	
1.0	× 2.0	.120	20	0.809	
1.0	× 3.0	.120	20	1.056	
2.0	× 6.0	.120	20	2.203	
4.0	× 6.0	.187	20	4.225	

116

ALUMINUM PIPE 6061 T6

	Sizes i	n Stock		
Diameter	Schedule	Length	Est. Wt. Ibs/ft	
1/4	40	20	0.136	
3 _{/8}	40	20	0.196	
1/2	40	20	0.292	
3/4	40	20	0.391	
1.0	40	20	0.581	
1.0	80	20	0.758	
1 ¹ / ₄	40	20	0.786	
1 ¹ / ₂	40	20	0.940	
1 ¹ / ₂	80	20	1.260	
2.0	40	20	1.264	
2.0	80	20	1.737	
2 ¹ / ₂	40	20	2.017	
2 ¹ / ₂	80	20	2.668	
3.0	40	20	2.637	
3.0	80	20	3.567	
3 ¹ / ₂	40	20	3.160	
4.0	40	20	3.756	
4.0	80	20	5.183	
5.0	40	24	5.100	
5.0	80	20	7.157	
6.0	40	20	6.564	
12.0	40	22, 25	18.520	

ALUMINUM PIPE 6061 T4

Sizes in Stock								
Diameter	Wall	Length	Est. Wt. Ibs/ft					
³ /4	40	20	0.391					
1.0	40	24	0.581					
1 ¹ / ₄	40	24	0.788					
1 ¹ / ₂	40	24	0.940					
2.0	40	20	1.271					
2 ¹ / ₂	40	20	2.017					
2 ¹ / ₂ 3.0	40	20	2.637					
4.0	10	20	2.033					
4.0	40	20	3.733					

ALUMINUM PIPE 6063 T5

Sizes in Stock							
Diameter	Wall	Length	Est. Wt. Ibs/ft				
3/4	40	24	0.391				
1 ¹ / ₄	40	24	0.786				
1 ¹ / ₂	40	24	0.940				
2.0	40	24	1.264				

MARINE/DUMP/TANKER/TRAILERS 5083-H321/116

An alloy with superior tensile strength and welding properties. Typical end uses are large marine craft, containers, railroad cars, structurals and elevator cars. This material is dual certified and has a tensile strength of 44 ksi(min) and 31 ksa(min) yield. In addition, 5083-321/H116 has excellent corrosion resistance.

	Sizes in Stock							
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft	
3/16 3/16 3/16 3/16 3/16 3/16 3/16 3/16	48 48 60 60 60 72 72 72 84	192 spv 240 spv 192 spv 288 360 240 240 288 spv 360 288	2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	48 48 60 60 72 84 72 60 60 96 60 96	240 spv 192 spv 240 spv 192 spv 288 spv 240 spv 288 240 192 240 240 192 240	3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.5 5.4 5.4 5.4 5.4 5.4 7.2 7.2	

5454-H32

A non heat treatable alloy of medium strength and with high corrosion resistance in marine applications. Typical uses are truck dump bodies, tanker trucks and chemical storage tanks on vessels.

Sizes in Stock								
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft	
.188 .188	60 72	144 144	2.7 2.7	.250. 250	60 72	144 144	3.6 3.6	

5086-H116

Sister alloy to 5083 with comparable characteristics but slightly less strength. Used in welded pressure vessels, marine applications, drilling rigs and transportation equipment.

Sizes in Stock								
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickn	ess	Width	Length	Est. Wt. Ibs/sqft
.188	72	240	2.7	.250).	72	240	3.6

TREAD PLATE

5086-H116 DIAMOND PATTERN

This material is excellent for locations requiring skid resistant floors or docks with added corrosion characteristics

Sizes in Stock								
Thickness	Width	Length	Est. Wt. Ibs/sqft	Thickness	Width	Length	Est. Wt. Ibs/sqft	
³ /16 ³ /16	60 60	192 240	2.8 2.8	3/8 3/8	48 48	96 192	5.22 5.22	

TREAD PLATE 5052-H32 5 BAR PATTERN

This material is excellent for locations requiring skid resistant floors or docks with added corrosion characteristics

Sizes in Stock						
Thickness	Width	Length	Est. Wt. Ibs/sqft			
³ /16 ³ /16	60 60	192 240	2.8 2.8			

VAN TRAILER 3004-H291, HIGH GLOSS WHITE 1 SIDE

Sizes in Stock							
Thickness	Width	Length	Est. Wt. Ibs/sqft				
040 .040	49 coil	96	.576 .576				
.050 .050 .050	49 coil	108 110	.720 .720 .720				

VAN TRAILER UTILITY, HIGH GLOSS BLACK 1 SIDE

Sizes in Stock						
Thickness Width Length	Est. Wt. Ibs/sqft					
.040 49 coil .040 96 .040 120	.576 .576 .576					

ROOF COIL

Sizes in Stock							
Thickness	Width Lei	ngth Est. Wt. Ibs/sqft					
.032 .032	96 coil 102 coil	.461 .461					
.040	102 coil	.576					

SIGN MAUFACTURING

Utility Pre-painted White

Pre-painted white high gloss polyester 2 sides, wax free.

Has an excellent surface appearance and cleanliness.

Other colours and coating systems available upon request.

Custom lemgths available upon request.

	Sizes in Stock									
Thickness	Width	Length	Est. Wt. Ibs/sqft							
.025	48 x coil		.36							
.025	48	120	.36							
.025	48	96	.36							
.040	48 x coil		.36							
.040	48	96	.576							
.040	48	120	.576							
.050	48 x coil		.576							
.050	48	96	.72							
.050	48	120	.72							
.063	48 x coil		.72							
.063	48	96	.907							
.063	48	120	.907							
.080	48 x coil		.907							
.080	48	96	1.15							
.080	48	120	1.15							

5052-H38 Alodined 2 sides

This material is full hard 39 ksi (min) tensile, 32 ksi (min) yield which has increased strength and corrosion resistance. The product has been pre-treated with a conversion coat for excellent adhesion and is ready for films and other coatings.

Sizes in Stock											
Thickness	Width	Length	Est. Wt. Ibs/sqft								
.080 .080	48 x coil 48 x	96	1.15 1.15								
.080 .080	48 x 48 x	120 144	1.15 1.15 1.15								

TECHNICAL DATA / Alloy Designation System

A system for designating wrought aluminum and wrought aluminum alloys was established by the Aluminum Association. Specific limits for chemical compositions to which conformance is required are provided by applicable product standards

Wrought Aluminum and Aluminum Alloy Designation System.

A system of four-digit numerical designations is used to identify wrought aluminum and wrought aluminum alloys.

The first digit indicates the alloy group as follows:

Aluminum, 99.00 percent minimum and greater 1XXX

Aluminum Alloys grouped by major alloying

elements.

Copper (Cu) Manganese (Mn)	2XXX
Manganese (Mn)	3XXX
Silicon (Si)	4XXX
Magnesium (Mg)	5XXX
Magnesium and Silicon (Mg and Si)	6XXX
Zinc (Zn)	7XXX
Other Element	8XXX

Unused series ______9XXX

ALUMINUM

In the 1XXX group for minimum aluminum purities of 99.00 percent and greater, the last two fo the four digits in the designation indicate the minimum aluminum percentage. These digits are the same as the last two digits to the right of the decimal point in the minimum aluminum percentage when it is expressed to the nearest 0.01 percent. The second digit in the designation indicates modifications in impurity limits. If the second digit is zero, it indicates unalloyed aluminum having natural impurity limits; integers 1 through 9, which are assigned consecutively as needeed, indicate special control of one or more individual impurities or alloying elements

ALUMINUM ALLOYS

In the 2XXX through 8XXX alloy groups the last two of the four digits in the designation have no special significance but serve only to identify the different alloys in the group. The second digit in the alloy designation indictes alloy modifications. If the second digit is zero, it indicates the original alloy; integers 1 through 9, which are asigned consecutively, indicte alloy modifications.

NATIONAL VARIATIONS

National variations of wrought aluminum and wrought aluminum alloys registered by another country in accordance with this system are indentified by a serial letter following the numerical designation. The serial letters are assigned internationally in alphabetic sequence starting with A but omitiing I, O and Q.

EXPERIMENTAL ALLOYS

Experimental alloys are also designated in accordance with this system but they are indicted by the prefix X. The prefix is dropped when the alloy is no longer experimental. During the development and before they are designated as experimental, new alloys are indentified by serial numbers assigned by their originators. Use of the serial number is discontinued when the X is assigned.

TECHNICAL DATA / Temper Designation System

The Aluminum Association's established temper designation system is used for all forms of wrought and cast aluminum and aluminum alloys except ingot. It is based on the sequence of basic treatments used to produce various tempers. The temper designation follows the alloy designation with the two seperated by a hyphen. Basic designations consist of a letter while the subdivisions of those basic tempers, where required, are indicated by one or more digits following those letters. The sytem is designed to set down specific sequences of fabrication processes, but only those operations that are recognized as significantly influencing the characteristics of the product are involved. Should some other variationof the same sequence of basic operations be applied to the same alloy, resulting in different characteristics, then additional digits will be added to the numerical designation.

BASIC TEMPER DESIGNATIONS

- F AS FABRICATED Denotes metal that has been fabricated to ordered dimensions without any attempt on the part of the producer To control the results of either strain-hardening operations or thermal treatments. There are no mechanical property limits, and the strength levels may vary from lot to lot and from shipment to shipment.
- <u>ANNEALED</u> Applies to wrought products O that have undergone a thermal treatment to reduce their mechanical property levels to their minimums. Often described as "dead soft" metal.
- SOLUTION HEAT-TREATED An unstable W temper applying to certain of the heat-treatable alloys that, after heat treatment, spontaneously age harden at room temperature. Only when the period of natural aging is indicated (W 1 hr for example) is this a specific and complete designation.
- <u>STRAIN-HARDENED</u> Applies to those H wrought products which have had an increase in strength by reduction through strain-hardening, or cold working, operations. The "H" is always followed by two or more digits.

THERMAL TREATED TO PRODUCE TEM-T PERS OTHER THAN F. O OR H.

Applies to those products which have an increase in strength due to thermal treatments, with or without supplemental strainhardening operations. The "T" is always followed by one or more digits.

SUBDIVISIONS OF BASIC TEMPERS SUBDIVISION OF "H" TEMPER NON-HEAT-TREATABLE ALLOYS

STRAIN-HARDENED ONLY Applies to prod-H1 ucts which are strain-hardened or cold worked to obtain the desired strength level without supplemental thermal treatments. The number following this designation indictes the degree of strain-hardening.

STRAIN-HARDENED AND PARTIALLY H2 ANNEALED Applies to products strain hardened or cold worked more then the desired final amount and then reduced in strength to that desired level by partial annealing operation. H3 <u>STRAIN-HARDENED</u> AND <u>STABILIZED</u> Applies to products in the magnesium-aluminum class which will age-soften at room temerature after strain-hardening. These products are stain-hardened to the desired amount and then subjected to a low temperature thermal operation which results in a stable but slightly lower tensile strength and improved ductility. The number following this designation indicates the degree of strainhardening remaining after the stabilization treatment

The digit following the designation H1, H2 or H3 indicates the degree of strain-hardening as follows:

H_1 1/8 hard H_2 1/4 hard H_3 3/8 hard H_4 1/2 hard	H_5 5/8 hard H-6 3/4 hard
H 4 1/2 hard	H-6 3/4 hard
-	H-7 7/8 hard

H_8 full hard (approximately 75% reduction

ŀ

ŀ

ŀ

after a full anneal) H_9 extra hard (limited to certain alloys and/or product forms)

The third digit, when used, indicates a variation of the two-digit temper. It is used when the degree of control of temper or the mechanical properties are different

per or the mechanical properties are different from but close to the two-digit designation to which it is added, or when some other characteristic is significantly affected.

The following three-digit H temper designations have been assigned for wrought products in all alloys:

- H_11 Applies to products which incur sufficent strain-hardening after the final anneal that they fail to qualify as annealed but nit enough to qualfy as H-1
- H112 Applies to products which may acquire some temper from working at an elevated temperature and for which there are mechanical property limits.

Temper Designation System (continued)

The following three-digit H temper designations have been assigned for patterned or embossed sheet. It is estimated that the amount of strain-hardening or cold working, imparted by the embossing action increses the mechanical property level be one-eigth. Based on this, the second digit is increased by one and a four is added as the third digit to denote that the metal has been embossed. Although seldom seen, note that the system changes when extra hard metal (H_9) is embossed.

Beginning Unembossed Resulting Embossed (respectively)

0	H114
H11, H21, H31	H124, H224, H324
H12, H22, H32	H135, H234, H334
H13, H23, H33	H144, H244, H344
H14, H24, H34	H154, H254, H354
H15, H25, H35	H164, H264, H364
H16, H26, H36	H174, H274, H374
H17, H27, H37	H184, H284, H384
H18, H28, H38	H194, H284, H394
H18, H28, H38	H194, H294, H394
H19, H29, H39	H195, H295, H395

SUBDIVISION OF "T" TEMPER HEAT-TREATABLE ALLOYS

- T1 COOLED FROM AN ELEVATED TEMPERATURE SHAPING PROCESS AND NATURALLY AGED TO A SUBSTANTIALLY STABLE CONDITION Usually associated with extruded products and limited to certain of the 6XXX series alloys.
- T2 COOLED FROM AN ELEVATED TEMPERATURE SHAPING PROCESS, COLD WORKED AND NATURALLY AGED TO A SUBSTANTIALLY STA-BLE CONDITION Usually associated with cast products.
- T3 SOLUTION HEAT-TREATED, COLD WORKED AND NATURALLY AGED TO A SUBSTANTIALLY STABLE CONDITION Usually associated with cast products.
- T4 SOLUTION HEAT-TREATED, AND NATURALLY AGED TO A SUBSTANTIALLY STABLE CONDI-TION
- T5 COOLED FROM AN ELEVATED TEMPERATURE SHAPING PROCESS AND ARTIFICIALLY AGED Usually associated with extruded products in certain of the 6XXX series alloys. (T1+artificial age)
- SOLUTION HEAT-TREATED AND ARTIFICIALLY

A srable temper. (T4+artificial age)

SOLUTION HEAT-TREATED AND

- T7 OVERAGED/STABILIZED Applies to alloy products which are thermally overaged after solution heat-treatment to carry them beyond the point of maximum strength to provide control of some special characteristic. A stable temper.
- SOLUTION HEAT-TREATED, COLD WORKED, T8 AND ARTIFICIALLY AGED A stable temper. (T3+artificial age)

- T9 SOLUTION HEAT-TREATED, ARTIFICIALLY AGED, AND COLD WORKED A stable temper. (T6+cold work)
- T10 COOLED FROM AN ELEVATED TEMPERATURE SHAPING PROCESS, COLD WORKED AND ARTIFICIALLY AGED Usually associated with cast products. A stable temper. (T2+artificial age)

Additional digits, the first of which shall not be zero, maybe added to the basic designations to indicate a variation in treatment which significantly alters the characteristics of the product.

The following specific additional digits have been assigned for stress-relieved tempers of wrought products.

- T_51 Applies to certain products when stressrelieved by stretching the indicated amount. Stretching is performed after solution heat treatment or after cooling from an elevated temperature shaping process. No straightening tales place after stretching. Plate _______15 to 3% permanent set Rolled or cold finished rod or bar _______1 to 3% permanent set Die or ring forgings __1 to 3% permanent set
- Applies to extruded products and to drawn tube when stress-relieved by stretching is performed after solution heat treatment or after cooling from an elevated temperature shaping process. These products may recieve minor straightening to comply with standard tolerances. Bar, shapes and tube1 to 3% permanent set Drawn tube 0.5 to 3% permanent set
 - Applies to products stress-relieved by T_52 compressing.

Applies to die forgings stress-relieved T 54 by restiking code.

The following temper designations have been assigned for wrought product test material heat-treated from annealed (0, 01, etc.) or F temper, or to wrought products heat-treated from any temper by the user. The former demonstrates a response to heat-treatment.

- T_42 Solution heat-treated and naturally aged to a substantially stable condition.
- T_62 Solution heat-treated and artificially aged to a substantially stable condition.

Technical Data/Chemical Composition Limits

CHEMICAL COMPOSITION LIMITS OF WROUGHT ALUMINUM ALLOYS⁽¹⁾⁽²⁾

				Man-	Mag-	Chrom-		Titan-	Othe	ers	Alumi- num
Alloy	Silicon	Iron	Copper	ganese	nesium	lum	Zinc	ium	Each ⁽³⁾	Total ⁽⁴⁾	Min, ⁽⁵⁾
1100 1145 ⁽⁷⁾ 1350 ⁽⁹⁾	0.95 Si 0.55 Si 0.10		0.05-0.20 0.05 0.05	0.05 0.05 0.01	0.05 —	0.01	0.10 0.05 0.05	0.03	0.05 ⁽⁶⁾ 0.03 ⁽⁸⁾ 0.03 ⁽¹⁰⁾	0.15	99.00 99.45 99.50
2011 2014 2017 2024	0.40 0.50-1.2 0.20-0.8 0.50	0.7 0.7 0.7 0.50	5.0-6.0 3.9-5.0 3.5-4.5 3.8-4.9	 0.40-1.2 0.40-1.0 0.30-0.9	 0.20-0.8 0.40-0.8 1.2-1.8	0.10 0.10 0.10	0.30 0.25 0.25 0.25	0.15 0.15 0.15	0.05 ⁽¹¹⁾ 0.05 0.05 0.05	0.15 0.15 0.15 0.15	Remainder Remainder Remainder Remainder
2117 2124 2219	0.8 0.20 0.20	0.7 0.30 0.30	2.2-3.0 3.8-4.9 5.8-6.8	0.20 0.30-0.9 0.20-0.40	0.20-0.50 1.2-1.8 0.02	0.10 0.10 —	0.25 0.25 0.10		0.05 0.05 0.05 ⁽¹²⁾	0.15 0.15 0.15	Remainder Remainder Remainder
3003 3004 3005 3105	0.6 0.30 0.6 0.6	0.7 0.7 0.7 0.7	0.05-0.20 0.25 0.30 0.30	1.0-1.5 1.0-1.5 1.0-1.5 0.30-0.8		 0.10 0.20	0.10 0.25 0.25 0.40	 0.10 0.10	0.05 0.05 0.05 0.05	0.15 0.15 0.15 0.15	Remainder Remainder Remainder Remainder
4043	4.5-6.0	0.8	0.30	0.05	0.05	_	0.10	0.20	0.05 ⁽⁶⁾	0.15	Remainder
5005 5050 5052 5056 5083	0.30 0.40 0.25 0.30 0.40	0.7 0.7 0.40 0.40 0.40	0.20 0.20 0.10 0.10 0.10	0.20 0.10 0.10 0.05-0.20 0.40-1.0	0.50-1.1 1.1-1.8 2.2-2.8 4.5-5.6 4.0-4.9	0.10 0.10 0.15-0.35 0.05-0.20 0.05-0.25	0.25 0.25 0.10 0.10 0.25	 0.15	0.05 0.05 0.05 0.05 0.05	0.15 0.15 0.15 0.15 0.15	Remainder Remainder Remainder Remainder Remainder
5086 5154 5183 5252	0.40 0.25 0.40 0.08	0.50 0.40 0.40 0.10	0.10 0.10 0.10 0.10	0.20-0.7 0.10 0.50-1.0 0.10	3.5-4.5 3.1-3.9 4.3-5.2 2.2-2.8	0.05-0.25 0.15-0.35 0.05-0.25 	0.25 0.20 0.25 0.05	0.15 0.20 0.15 	0.05 0.05 0.05 ⁽⁶⁾ 0.03 ⁽⁸⁾	0.15 0.15 0.15 0.10	Remainder Remainder Remainder Remainder
5356 5454 5456	0.25 0.25 0.25	0.40 0.40 0.40	0.10 0.10 0.10	0.05-0.20 0.50-1.0 0.50-1.0	4.5-5.5 2.4-3.0 4.7-5.5	0,05-0.20 0.05-0.20 0.05-0.20	0.10 0.25 0.25	0.06-0.20 0.20 0.20	0.05 ⁽⁶⁾ 0,05 0.05	0.15 0.15 0.15	Remainder Remainder Remainder
6061 6063	0.40-0.8 0.20-0.6	0.7 0.35	0.15-0.40 0.10	0.15 0.10	0.8-1.2	0.04 <i>-</i> 0.35 0.10	0.25 0.10	0.15 0.10	0.05 0.05	0.15 0.15	Remainder Remainder
6101 ⁽¹³⁾ 6105	0.30-0.7 0.6-1.0	0.50 0.35	0.10 0.10	0.03 0.10	0.35-0.8 0.45-0.8	0.03 0.10	0.10 0.10	 0.10	0.03 ⁽¹⁴⁾ 0.05	0.10 0.15	Remainder Remainder
6262 6351	0.40-0.8 0.7-1.3	0.7 0.50	0.15-0.40 0.10	0.15 0.40-0.8	0.8-1.2 0.40-0.8	0.04-0.14 —	0.25 0.20	0.15 0.20	0.05 ⁽¹⁵⁾ 0.05	0.15 0.15	Remainder Remainder
7005 7049 7050 7075 7129 7178	0.35 0.25 0.12 0.40 0.15 0.40	0.40 0.35 0.15 0.50 0.30 0.50	0.10 1.2-1.9 2.0-2.6 1.2-2.0 0.50-0.9 1.6-2.4	0.20-0.7 0.20 0.10 0.30 0.10 0.30	1.0-1.8 2.0-2.9 1.9-2.6 2.1-2.9 1.3-2.0 2.4-3.1	0.06-0.20 0.10-0.22 0.04 0.18-0.28 0.10 0.18-0.28	5.7-6.7 5.1-6.1 4.2-5.2	0.01-0.06 0.10 0.06 0.20 0.05 0.20	0.05 ⁽¹⁶⁾ 0.05 0.05 ⁽¹⁷⁾ 0.05 0.05 ⁽¹⁸⁾ 0.05	0.15 0.15 0.15 0.15 0.15 0.15	Remainder Remainder Remainder Remainder Remainder Remainder

NOTE: This table does not include all active alloys registered with the Aluminum Association.

- Composition in percent by weight maximum unless shown as a range or a minimum.
- (2) Except for "aluminum" and "others," analysis normally is made for elements for which specific limits are shown. For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis is rounded off to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with ASTM Recommended Practice E 29.
- (3) In addition to those alloys referencing footnote (6), a 0.0008 weight percent maximum beryllium is applicable to any alloy to be used as weiding electrode or welding rod.
- (4) The sum of those "others" metallic elements 0.010 percent or more each, expressed to the second decimal before determining the sum.
- (5) The aluminum content for unalloyed aluminum not made by a refining process is the difference between 100.00 percent and sum of all other metallic elements present in amounts of 0.010 percent or more each, expressed to the second decimal before determining the sum.

(6) Beryllium 0.0008 maximum for welding electrode and welding rod only.

- (7) Foil.
- (8) Vanadium 0.05 percent maximum.
- (9) Electric conductor. Formerly designated EC.
- (10) Vanadium plus titanium 0.02 percent maximum; boron 0.05 percent maximum; gallium 0.03 percent maximum.
- (11) Also contains 0.20-0.6 percent each of lead and bismuth.
- (12) Vanadium 0.05-0.15; zirconium 0.10-0.25.
- (13) Bus conductor.
- (14) Boron 0.06 percent maximum.
- (15) Also contains 0.40-0.7 percent each of lead and bismuth.
- (16) Zirconium 0.08-0.20.
- (17) Zirconium 0.08-0.15.
- (18) Vanadium 0.05 percent maximum; gallium 0.03 percent maximum.

Sheet, Plate & Coil/ Standard Tolerances

THICKNESS

Applicable to all alloys not included in the Aerospace Alloys table or specified for Aerospace applications. Also applicable to the alloys listed when supplied as Alclad.

					Specified Width-In.								
Thick	cified kness ⁽¹⁾ n.	Up thru 39.37	Over 39.37 thru 59.06	Over 59.06 thru 78.74	Over 78.74 thru 98.43	Over 98.43 thru 118.11	Over 118.11 thru 137.80	Over 137.80 thru 157.48	Over 157.48 thru 177.17				
Over	Thru			·	Tolerances-In.	plus and minus							
0.0059	0.010	0.0010	0.0015			-	_						
0.010	0.016	0.0010	0.0015	-	-	-		_					
0.016	0.025	0.0015	0.0020	0.0030	0.0035	_		_					
0.025	0.032	0.0020	0.0025	0.0035	0.0040	_	_	_					
0.032	0.039	0.0020	0.0030	0.0035	0.0045	0.006	_		—				
0.039	0.047	0.0025	0.0035	0.0045	0.0055	0.007	0.008	_	-				
0.047	0.063	0.0030	0.0035	0.0050	0.006	0.007	0.009						
0.063	0.079	0.0035	0.0040	0.0055	0.007	0.008	0.010	—	_				
0.079	0.098	0.0035	0.0045	0.006	0.007	0.009	0.011	-					
0.098	0.126	0.0045	0.0055	0.007	0.009	0.011	0.013	_					
0.126	0.158	0.0055	0.007	0.009	0.011	0.013	0.015		-				
0.158	0.197	0.007	0.009	0.011	0.013	0.015	0.018	_	· _ ··				
0.197	0.248	0.009	0.011	0.013	0.015	0.018	0.022	0.027	·				
0.248	0.315	0.012	0.014	0.015	0.018	0.022	0.027	0.035	0.043				
0.315	0.394	0.015	0.017	0.020	0.023	0.027	0.033	0.041	0.051				
0.394	0.630	0.023	0.023	0.027	0.032	0.035	0.043	0.053	0.065				
0.630	0.984	0.031	0.031	0.037	0.043	0.047	0.058	0.070	0.085				
0.984	1.575	0.039	0.039	0.047	0.055	0.065	0.075	0.090	0.105				
1.575	2.362	0.055	0.055	0.060	0.070	0.085	0.100	0.115	—				
2.362	3.150	0.075	0.075	0.085	0.100	0.105	0.125	_	— .				
3.150	3.937	0.100	0.100	0.115	0.125	0.130	0.160	[']	-				
3.937	6.299	0.130	0.130	0.145	0.165	—	_	_					

WIDTH AND LENGTH-Sawed Flat Sheet and Plate

Specified	Specified Width-In.											
Thickness	Up thru	Over 30	Over 60	Over 120	Over 240	Over 360	Over 480	Over 600				
In,	30	thru 60	thru 120	thru 240	thru 360	thru 480	thru 600	thru 720				
	Tolerance ⁽²⁾ –In.											
0.080-0.249	± 1/8	± 1/8	± ³ /16	± ¼	± ¼	± 5/16	± ³ /8	± ⁷ /16				
0.250-6.000	+ 1/4	+ 5/16	+ ³ /8	+ ½	+ %16	+ 5/8	+ ³ /4	+ ⁷ /8				

Notes:

The above standards are those published by the Aluminum Association, Aluminum Standards & Data 1990 and ANSI H35.2-90.

- (1) When a dimension tolerance is specified other than as an equal bilateral tolerance, the value of the standard tolerance is that which applies to the mean of the maximum and minimum dimensions permissible under the tolerance for the dimension under consideration.
- (2) Tolerances applicable at ambient mill temperatures. A change in dimension of 0.013 in. per 100 in. per 10° F must be recognized.

Tables

ESTIMATED SHEET AND PLATE WEIGHTS IN POUNDS, BASED ON DENSITY OF 0.100 lb./cu. in.⁽¹⁾⁽²⁾

Thickness	Weight			3	Estimated Wei	ghts Of Vario	us Sheet Size:	3		
Inches	Sq. Ft.	24 × 72''	36 × 96"	36 × 120''	36 × 144"	48 × 96"	48 × 120"	48 × 144"	60 × 144"	60 × 180"
.012	.173	2.1	4.2	5.2	6.2	5.5	6.9	8.3	10.4	13.0
.016	.230	2.8	5.5	6.9	8.3	7.4	9.2	11.0	13.8	17.3
.020	.288	3.5	6.9	8.6	10.4	9.2	11.5	13.8	17.3	21.6
.025	.360	4.3	8.6	10.8	13.0	11.5	14.4	17.3	21.6	27.0
.032	.461	5.5	11.1	13.8	16.6	14.8	18.4	22.1	27.7	34.6
.040	.576	6.9	13.8	17.3	20.7	18.4	23.0	27.6	34.6	43.2
.050	.720	8.6	17.3	21.6	25.9	23.0	28.8	34.6	43.2	54.0
.063	.907	10.9	21.8	27.2	32.6	29.0	36.3	43.5	54.4	68.0
.071	1.022	12.3	24.5	30.7	36.8	32.7	40.9	49.1	61.3	76.7
.080	1.152	13.8	27.6	34.6	41.5	36.9	46.1	55.3	69.1	86.4
.090	1.296	15.6	31.1	38.9	46.7	41.5	51.8	62.2	77.8	97.2
.100	1.440	17.3	34.6	43.2	51.8	46.1	57.6	69.1	86.4	108.0
.125	1.800	21.6	43.2	54.0	64.8	57.6	72.0	86.4	108.0	135.0
.160	2.304	27.6	55.3	69.1	82.9	73.7	92.2	110.6	138.2	172.8
.190	2.736	32.8	65.7	82.1	98.5	87.6	109.4	131.3	164.2	205.2
.250	3.600	43.2	86.4	108.0	129.6	115.2	144.0	172.8	216.0	270.0
.313	4.507	54.1	108.2	135.2	162.3	144.2	180.3	216.3	270.4	338.0
.375	5.400	64.8	129.6	162.0	194.4	172.8	216.0	259.2	324.0	405.0
.500	7.200	86.4	172.8	216.0	259.2	230.4	288.0	345.6	432.0	540.0
.625	9.000	108.0	216.0	270.0	324.0	288.0	360.0	432.0	540.0	675.0
.750	10.800	129.6	259.2	324.0	388.8	345.6	432.0	518.4	648.0	810.0
.875	12.600	151.2	302.4	378.0	453.6	403.2	504.0	604.8	756.0	945.0
1.000	14.400	172.8	345.6	432.0	518.4	460.8	576.0	691.2	864.0	1080.0
1.250	18.000	216.0	432.0	540.0	648.0	576.0	720.0	864.0	1080.0	1350.0
1.500	21.600	259.2	518.4	648.0	777.6	691.2	864.0	1036.8	1296.0	1620.0
1.750	25.200	302.4	604.8	756.0	907.2	806.4	1008.0	1209.6	1512.0	1890.0
2.000	28.800	345.6	691.2	864.0	1036.8	921.6	1152.0	1382.4	1728.0	2160.0
2.250	32.400	388.8	777.6	972.0	1166.4	1036.8	1296.0	1555.2	1944.0	2430.0
2.500	36.000	432.0	864.0	1080.0	1296.0	1152.0	1440.0	1728.0	2160.0	2700.0
2.750	39.600	475.2	950.4	1188.0	1425.6	1267.2	1584.0	1900.8	2376.0	2970.0
3.000	43.200	518.4	1036.8	1296.0	1555.2	1382.4	1728.0	2073.6	2592.0	3240.0
4.000	57.600	691.2	1382.4	1728.0	2073.6	1843.2	2304.0	2764.8	3456.0	4320.0
5.000	72.000	864.0	1728.0	2160.0	2592.0	2304.0	2880.0	3456.0	4320.0	5400.0
6.000	86.400	1036.8	2073.6	2592.0	3110.4	2764.8	3456.0	4147.2	5184.0	6480.0

Notes:

(1) Table does not take into consideration thickness, length or width tolerances.

(2) For specific alloys, a more accurate weight may be obtained by multiplying the weights in this table by the appropriate density conversion factor shown below.

WEIGHT CONVERSION FACTORS FOR OTHER ALLOYS AND METALS

Multiply weights above by the appropriate conversion factor below.

Aluminum Alloy	Conversion Factor	Aluminum Alloy	Conversion Factor	Other Metals	Conversion Factor
1100	0.98	5052	0.97	Brass	3.0
1350	0.975	5083	0.96	Copper	3.2
2014	1.01	5086	0.96	Nickel	3.2
2024	1.01	5252	0.96	Monel	3.2
2219	1.03	5454	0.97	Steel	2.8
2124	1.00	5456	0.96	Zinc	2.5
3003	0.99	5457	0.97	Tin	2.6
3004	0.98	6061	0.98	Titanium	1.7
3005	0.98	7050	1.02	Magnesium	0.65
3105	0.98	7075	1.01		
5005	0.98	7178	1.02	·	<u></u>
5050	0.97	_		and the second s	

Sheet, Plate & Coil/Standard Tolerances

THICKNESS FOR SHEET AND PLATE FOR AEROSPACE ALLOYS

Alloys 2014, 2024, 2124, 2219, 7049, 7050, 7075, 7150, 7178 and 7475 and other alloys when specified for aerospace applications. Also applicable to alloys when supplied as Alclad.

						S	pecified Wid	ithin,					
Spec Thick In	ness ⁽¹⁾	Up thru 39.37	Over 39.37 thru 47.24	Over 47.24 thru 55.12	Over 55.12 thru 59.06	Over 59.06 thru 70.87	Over 70.87 thru 78.84	Over • 78.74 thru 86.61	Over 86.61 thru 98.43	Over 98.43 thru 118.11	Over t18.11 thru 137.80	Over 137.80 thru 157.48	Over 157,48 thru 177,17
Over	Thru					Tolerar	nce-in. plus	and minus				•	
0.0059	0.010	0.0010	0.0020	0.0020	0.0020	_	—	_	_	_	_	·	_
0.010	0.016	0.0015	0.0025	0.0025	0.0025	-	·	-	—	—	—		—
0.016	0.025	0.0015	0.0025	0.0025	0.0025	-		—	—	—	—	_	
0.025	0.032	0.0015	0.0015	0.0020	0.0030	0.0030			—	_	_	-	_
0.032	0.039	0.0015	0.0015	0.0020	0.0030	0.0030	0.0035	0.0035	0.007	—	-		
0.039	0.047	0.0020	0.0020	0.0020	0.0030	0.0030	0.0035	0.0035	0.008	0.010	0.011		
0.047	0.063	0.0020	0.0020	0.0030	0.0030	0.0030	0.0035	0.0035	0.009	0.011	0.013	_	
0.063	0.079	0.0020	0.0020	0.0030	0.0035	0.0035	0.0035	0.0035	0.010	0.013	0.015	—	
0.079	0.098	0.0025	0.0025	0.0035	0.0040	0.0040	0.0045	0.0045	0.011	0.015	0.018	—	_
0.098	0.126	0.0035	0.0035	0.0035	0.0045	0.0045	0.0045	0.0045	0.013	0.016	0.020	<u> </u>	_
0.126	0.158	0.0040	0.0040	0.0045	0.007	0.007	0.009	0.009	0.015	0.018	0.022		
0.158	0.197	0.0055	0.007	0.007	0.009	0.009	0.011	0.011	0.018	0.022	0.026	-	
0.197	0.248	0.009	0.012	0.012	0.012	0.017	0.017	0.021	0.021	0.025	0.029		
0.248	0.315	0.012	0.015	0.015	0.015	0.019	0.019	0.024	0.024	0.029	0.033	0.041	0.051
0.315	0.394	0.017	0.018	0.018	0.018	0.022	0.022	0.028	0.028	0.033	0.039	0.047	0.059
0.394	0.630	0.023	0.023	0.023	0.023	0.028	0.028	0.033	0.033	0.039	0.047	0.059	0.070
0.630	0.984	0.031	0.031	0.031	0.031	0.037	0.037	0.043	0.043	0.051	0.060	0.070	0.085
0.984	1.575	0.039	0.039	0.039	0.039	0.047	0.047	0.055	0.055	0.065	0.075	0.090	0.105
1.575	2.362	0.055	0.055	0.055	0.055	0.060	0.060	0.070	0.070	0.090	0.100	0.115	
2.362	3.150	0.075	0.075	0.075	0.075	0.085	0.085	0.100	0.100	0.110	0.125	—	
3.150	3.937	0.100	0.100	0.100	0.100	0.115	0.115	0.130	0.130	0.150	0.160	—	—
3.937	6.299	0.130	0.130	0.130	0.130	0.145	0.145	0.165	0.165	ŀ	—	_	. —

Notes:

The above standards are those published by the Aluminum Association, Aluminum Standards & Data 1990 and ANSI H35.2-90.

(1) When a dimension tolerance is specified other than as an equal bilateral tolerance, the value of the standard tolerance is that which applies to the mean of the maximum and minimum dimensions permissible under the tolerance for the dimension under consideration.

RECOMMENDED MINIMUM INSIDE BEND RADII FOR 90 DEGREE COLD FORMING OF SHEET AND PLATE⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

			R	adii For Various	Thicknesses Ex	pressed In Term	s Of Thickness	Τ"	
Alloy	Temper	1/64 In.	1/32 in.	1/16 In.	1/8 in.	3/16 In.	1/4 In.	3/8 in.	1/2 in
5052	O	0	0	0	½t	1t	1t	1½t	1½t
	H32	0	0	1t	1½t	1½t	1½t	1½t	2t
	H34	0	1t	1½t	2t	2t	2½t	2½t	3t
	H36	1t	1t	1½t	2½t	3t	3½t	4t	4½t
	H38	1t	1½t	2½t	3t	4t	5t	5½t	6½t
5083	O H321	-	-	1½t 1t	1t 1½t	1t 1½t	. 1t 1½t	1½t 2t	1½t 2½t
5086	O	0	0	½t	1t	1t	1t	1½t	1½t
	H32	0	½t	1t	1½t	1½t	2t	2½t	3t
	H34	½t	1t	1½t	2t	2½t	3t	3½t	4t
	H36	1½t	2t	2½t	3t	3½t	4t	4½t	5t
5454	O	0	½t	1t	1t	1t	1½t	1½t	2t
	H32	∦t	½t	1t	2t	2t	2½t	3t	4t
	H34	∦t	1t	1½t	2t	2½t	3t	3½t	4t
6061	O	0	0	0	1t	1t	1t	1½t	2t
	T4	0	0	1t	1½t	2½t	3t	3½t	4t
	T6	1t	1t	1½t	2½t	3t	3½t	4½t	5t
7075	O	0	0	1t	1t	1½t	2½t	3½t	4t
	T6	3t	4t	5t	6t	6t	8t	9t	9½t

Notes:

- (1) The radii listed are the minimum recommended for bending sheets and plates without fracturing in a standard press brake with air bend dies. Other types of bending operations may require larger radii or permit smaller radii. The minimum permissible radii will also vary with the design and condition of the tooling.
- (2) Alclad sheet in the heat-treatable alloys can be bent over slightly smaller radii than the corresponding tempers of the bare alloy.
- (3) Heat-treatable alloys can be formed over appreciably smaller radii immediately after solution heat treatment.
- (4) The H112 temper (applicable to non-heat-treatable alloys) is supplied in the as-fabricated condition without special property control but usually can be formed over radii applicable to the H14 (or H34) temper or smaller.
- (5) Tempers T361 and T861 formerly designated T36 and T86 respectively.

Sheet, Plate & Coil/Mechanical Properties

The following typical properties are not guaranteed since in most cases they are averages for various sizes, product forms and methods of manufacture and may not be exactly representative of any particular product or size. These data are intended only as a basis for comparing alloys and tempers and should not be specified as engineering requirements or used for design purposes.

	[Т	ENSION		HARDNESS	SHEAR	FATIGUE	MODULUS
	Stren ks			gation In 2 In.	Brineli Number	Uitimate Shearing	Endurance ⁽²⁾ Limit	Modulus ⁽³⁾ Of
Alloy And Temper	Uitimate	Yield	1/16 in. Thick Specimen	1/2 In. Diameter Specimen	500 kg load 10 mm ball	Strength ksi	ksi	Elasticity ksi × 10 ³
1100-O 1100-H12 1100-H14 1100-H16 1100-H18	13 16 18 21 24	5 15 17 20 22	35 12 9 6 5	45 25 20 17 15	23 28 32 38 44	9 10 11 12 13	5 6 7 9 9	10.0 10.0 10.0 10.0 10.0
1350-O 1350-H12 1350-H14 1350-H16 1350-H19	12 14 16 18 27	4 12 14 16 24				8 9 10 11 15	 7	10.0 10.0 10.0 10.0 10.0
2014-O 2014-T4, T451 2014-T6, T651	27 62 70	14 42 60		18 20 13	45 105 135	18 38 42	13 20 18	10.6 10.6 10.6
Alclad 2014-O Alclad 2014-T3 Alclad 2014-T4, T451 Alclad 2014-T6, T651	25 63 61 68	10 40 37 60	21 20 22 10			18 37 37 41	 	10.5 10.5 10.5 10.5
2024-0 2024-T3 2024-T4, T351 2024-T361 ⁽⁴⁾	27 70 68 72	11 50 47 57	20 18 20 13	22 	47 120 120 130	18 41 41 42	13 20 20 18	10.6 10.6 10.6 10.6
Alclad 2024-O Alclad 2024-T3 Alclad 2024-T4, T351 Alclad 2024-T361 ⁽⁴⁾ Alclad 2024-T81, T851 Alclad 2024-T861 ⁽⁴⁾	26 65 64 67 65 70	11 45 42 53 60 66	20 18 19 11 6 6	-		18 40 40 41 40 42		10.6 10.6 10.6 10.6 10.6 10.6
2036-T4	49	28	24	—		-	18 ⁽⁵⁾	10.3
2219-0 2219-T42 2219-T31, T351 2219-T37 2219-T62 2219-T81, T851 2219-T87	25 52 57 60 66 69	11 27 36 46 42 51 57	18 20 17 11 10 10					10.6 10.6 10.6 10.6 10.6 10.6 10.6
3003-O 3003-H12 3003-H14 3003-H16 3003-H18	16 19 22 26 29	6 18 21 25 27	30 10 8 5 4	40 20 16 14 10	28 35 40 47 55	11 12 14 15 16	7 8 9 10 10	10.0 10.0 10.0 10.0 10.0

TYPICAL MECHANICAL PROPERTIES⁽¹⁾

-		(4)
TYPICAL	MECHANICAL	PROPERTIES ⁽¹⁾

		. τ	ENSION		HARDNESS	SHEAR	FATIGUE	MODULUS	
	Streng ksi		percent	ation in 2 In.	Brineli Number	Ultimate Shearing Strength	Endurance ⁽²⁾ Limit	Modulus ⁽³⁾ Of Elasticity	
Alloy And Temper	Ultimate	Yleid	1/16 In. Thick Specimen	1/2 In. Diameter Specimen	500 kg load 10 mm ball	ksi	ksi	ksi × 10 ³	
3004-O 3004-H32 3004-H34 3004-H36 3004-H38	26 31 35 38 41	10 25 29 33 36	20 10 9 5 5	25 17 12 9 6	45 52 63 70 77	16 17 18 20 21	14 15 15 16 16	10.0 10.0 10.0 10.0 10.0	
Alclad 3004-O Alclad 3004-H32 Alclad 3004-H34 Alclad 3004-H36 Alclad 3004-H38	26 31 35 38 41	10 25 29 33 36	20 10 9 5 5	25 17 12 9 6		16 17 18 20 21		10.0 10.0 10.0 10.0 10.0	
3105-O 3105-H12 3105-H14 3105-H16 3105-H18 3105-H25	17 22 25 28 31 26	8 19 22 25 28 23	24 7 5 4 3 8		1111	12 14 15 16 17 15	 	10.0 10.0 10.0 10.0 10.0 10.0	
5005-O 5005-H12 5005-H14 5005-H16 5005-H18 5005-H32 5005-H34 5005-H36 5005-H38	18 20 23 26 29 20 23 26 29	6 19 22 25 28 17 20 24 27	25 10 6 5 4 11 8 6 5		28 36 41 46 51	11 14 15 16 14 14 15 16		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	
5050-O 5050-H32 5050-H34 5050-H36 5050-H38	21 25 28 30 32	8 21 24 26 29	24 9 8 7 6		36 46 53 58 63	15 17 18 19 20	12 13 13 14 14	10.0 10.0 10.0 10.0 10.0	
5052-O 5052-H32 5052-H34 5052-H36 5052-H38	28 33 38 40 42	13 28 31 35 37	25 12 10 8 7	30 18 14 10 8	47 60 68 73 77	18 20 21 23 24	16 17 18 19 20	10.2 10.2 10.2 10.2 10.2 10.2	
5083-O 5083-H321, H116	42 46	21 33		22 16		25 —		10.3 10.3	
5086-O 5086-H32, H116 5086-H34	38 42 47	17 30 37	22 12 10			23 27	- - -	10.3 10.3 10.3	

TYPICAL MECHANICAL PROPERTIES⁽¹⁾

		Ť	ENSION		HARDNESS	SHEAR	FATIGUE	MODULUS
			gation Brinell t in 2 In, Number		Ultimate Shearing	Endurance ⁽²⁾ Limit	Modulus ⁽³⁾ Of	
Alloy And Temper	Ultimate	Yleid	1/16 In. Thick Specimen	1/2 in. Diameter Specimen	500 kg load 10 mm ball	Strength ksi	ksi	Elasticity ksi × 10 ³
5154-O 5154-H32 5154-H34 5154-H34 5154-H36	35 39 42 45	17 30 33 36	27 15 13 12		58 67 73 78	22 22 24 26	17 18 19 20	10.2 10.2 10.2 10.2 10.2
5154-H38 5154-H112	48 35	39 17	10 25	_ _	80 63	28 	21 17	10.2 10.2
5454-O 5454-H32 5454-H34 5454-H112	36 40 44 36	17 30 35 18	22 10 10 18	 	62 73 81 62	23 24 26 23	 	10.2 10.2 10.2 10.2
5456-O 5456-H112 5456-H321, H116	45 45 51	23 24 37	-	24 22 16	— — 90	— — 30		10.3 10.3 10.3
6009-T4	33	18	25	-	62	22	17	10.0
6010-T4	42	25	24	·	78	28	18	10.0
6061-O 6061-T4, T451 6061-T6, T651	18 35 45	8 21 40	⁸ 25 22 12	30 25 17	30 65 95	12 24 30	9 14 14	10.0 10.0 10.0
7050-T7451 ⁽⁶⁾ 7050-T7651	76 80	68 71	_	11 11	_	44 47		10.4 10.4
7075-O 7075-T6, T651 7075-T73, T7351	33 83 73	15 73 63	17 11 13	16 11	60 150 —	22 48 —	 23 22	10.4 10.4 10.4
Alclad 7075-0 Alclad 7075-T6, T651	32 76	14 67	17 11		_	22 46		10.4 10.4

Notes:

(1) The indicated typical mechanical properties for all except O temper material are higher than the specified minimum properties. For O temper products typical ultimate and yield values are slightly lower than specified (maximum) values.

(2) Based on 500,000,000 cycles of completely reversed stress using the R.R. Moore type of machine and specimen.

(3) Average of tension and compression moduli. Compression modulus is about 2% greater than tension modulus.

(4) Tempers T361 and T861 were formerly designated T36 and T86, respectively.

(5) Based on 10⁷ cycles using flexural type testing of sheet specimens.

(6) T7451 although not previously registered has appeared in literature and in some specifications as T73651.

Sheet, Plate & Coil/Conversion Tables

	Brown & Sharpe	United States Standard (Old)	Mfrs.' Std. For Sheet Steel
Gauge	Non-Ferrous Sheet, Wire, And Rod Size, In	Ferrous Sheet And Plate	Uncoated Ferrous Sheet
Number			
0	0.3249	0.312	-
1	0.2893	0.281	
23	0.2576	0.266	0.2391
	0.2294	0.250	0.2391
4	0.2043	0.234	0.2242
5	0.1819	0.203	0.1943
6	0.1620		0.1943
7	0.1443	0.188	0.1793
8	0.1285	••••	0.1495
9	0.1144	0.156	0.1495
10	0.1019	0.141	0.1345
11	0.0907	0.125	0.1046
12	0.0808	0.109	0.1046
13	0.0720	0.0938	0.0897
14	0.0641	0.0781	0.0747
15	0.0571	0.0703	0.0598
16	0.0508	0.0625	0.0538
17	0.0453	0.0562	0.0338
18	0.0403	0.0500	0.0478
19	0.0359	0.0438	0.0418
20	0.0320	0.0375	0.0329
21	0.0285	0.0344	0.0329
22	0.0253		0.0269
23	0.0226	0.0281	0.0289
24	0.0201	0.0250	0.0239
25	0.0179	0.0219	0.0209
26	0.0159		0.0179
27	0.0142	0.0172	0.0184
28	0.0126	0.0156	0.0149
29	0.0113		0.0135
30	0.0100	0.0125	0.0120

DECIMAL EQUIVALENTS OF COMMON FRACTIONS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03125 .0625 .09375 .125 .15625 .1875 .21875
3/32 6/64 = 1/8 4/32 8/64 =	.09375 .125 .15625 .1875
1/8 4/32 8/64 =	.125 .15625 .1875
110 11-1	.15625 .1875
5/32 10/64 =	.1875
3/16 6/32 12/64 =	21875 l
7/32 14/64 =	
1/4 8/32 16/64 =	.25
9/32 18/64 =	.28125
5/16 10/32 20/64 =	· .3125
11/32 22/64 =	.34375
3/8 12/32 24/64 =	.375
13/32 26/64 =	.40625
7/16 14/32 28/64 =	.4375
15/32 30/64 =	.46875
1/2 16/32 32/64 =	.50
17/32 34/ 64 ≕	.53125
9/16 18/32 36/64 =	.5625
19/32 38/64 =	.59375
5/8 20/32 40/64 =	.625
21/32 42/64 =	.65625
11/16 22/32 44/64 =	.6875
23/32 46/64 =	.71875
3/4 24/32 48/64 =	.75
25/32 50/64 =	.78125
13/16 26/32 52/64 =	.8125
27/32 54/64 =	.84375
7/8 28/32 56/64 =	.875
29/32 58/64 =	.90625
15/16 30/32 60/64 =	.9375
31/32 62/64 =	.96875

METRIC UNITS AND U.S. CUSTOMARY UNITS LENGTH

U.S. Customary To Metric			Metric To U.S. Customary					
1 inch :	-	25.4 (exact)	mm.	1	mm.	=	0.03937	in.
:	=	2.54	cm.			=	0.003281	ft.
	=	0.0254	m.	1	cm.	=	0.3937	in.
1 foot	_	304.8	mm.			=	0.03281	ft.
	_	30.480	cm.				0.01094	yd.
:	=	0.3048	m	1	meter	=	39.37	in.
1 yard	=	91.44	cm.			=	3.2808	ft.
		0.9144	m.			=	1.0936	yd.
:	-	0.03914	km.			=	0.0 ₃ 6214	mi.
1 mile :	-	1609.344	m.	1	kilomete	er =	3280.833	ft.
	-	1.6093	km.			-	1093.611	yd.
		ë b	*			=	0.6214	mi.

Note: $0.0_34 = 0.0004$ — subscript number is number of zeroes after decimal.

OUR SERVICE CENTERS

Toronto

81 Steinway Blvd Etobicoke, ON M9W 6H6

Tel.: (416) 213-0000 Toll Free: 1(800) 387-9166 Fax: (416) 213-9989

Sales@asaalloys.com

Montreal

5775 Kieran Street St. Laurent, QC H4S 0A3

Tel.: (514) 339-1211 Toll Free: 1(800) 363-6646 Fax: (514) 339-1105

Ventes@magnastainless.com

Edmonton

#100, 112 Strathmoor Dr. Sherwood Park, AB T8H 2B7

Tel.: (780) 416-6422 Toll Free: 1(800) 465-2389 Fax: (780) 416-7594

EdmontonSales@asaalloys.com

Winnipeg

61 Paramount Road Winnipeg, MB R2X 2W6

Tel.: (204) 953-1910 Toll Free: 1(888) 671-0960 Fax: (204) 489-8542

WinnipegSales@asaalloys.com

Sarnia

1195 Michener Road Sarnia, ON N7S 4W3

Tel.: (519) 336-1936 Toll Free: 1(866) 272-8265 Fax: (519) 336-3664

SarniaSales@asaalloys.com

Moncton

Sudbury

1351J Kelly Lake Road

Sudbury , ON P3E 5P5

Toll Free: 1(888) 387-9166

SudburySales@asaalloys.co

Tel.: (705) 522-6773

Fax: (705) 522-2017

170 English Drive Moncton, NB E1E 4K6

Saskatoon

334 68th Street Saskatoon, SK S7P 0C3

Tel.: (306) 931-1880 Toll Free: 1(888) 931-1880 Fax: (306) 931-1919

SaskatoonSales@asaalloys.com

Tel.: (506) 872-4111 Toll Free: 1(855) 872-4111 Fax: (506) 872-4110

MonctonSales@asaalloys.com

4800 46th Ave SE Salmon Arm, BC V1E 2W1

Tel.: (250) 434-0660 Toll Free: 1(844) 499-1375 Fax: (250) 434-0662

SalmonArmSales@asaalloys.com

Certificate of Registration

This certificate has been awarded to

Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)

81 Steinway Boulevard, Etobicoke, ON, M9W 6H6, Canada

in recognition of the organization's Quality Management System which complies with

ISO 9001:2015

The scope of activities covered by this certificate is defined below

Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and Specialty Alloys.

	rtified & the site is their Head O	Number 208679/A/0001/UK/En ffree or Main site in relation to the Certified scope with URS. A certificate nu owing statement shall apply - 'The validity of this certificate depends on the	
Date of Issue of Certification Cycle	lssue Number	Certificate Expiry Date	Certification Cycle
28 January 2025	2	27 January 2028	2
Revision Date	Revision Number	Original Certificate Issue Date	Scheme Number
20 December 2024	1	28 January 2022	n/a

For detailed explanation for the data fields above, refer to http://www.urs-holdings.com/logos-and-regulations

Issued by

wh

Mukesh Singhal - On behalf of the Schemes Manager

Certificate of Registration Appendix

Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless) 81 Steinway Boulevard, Etobicoke ON M9W 6H6 Canada
C	
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
	Specialty Alloys.
0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 . 40 2050 . 550
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
	1351 J Kelly Lake Road, Sudbury ON P3E 5P5 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
	Specialty Alloys.
00000000000000000000000000000000000000	
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
	61 Paramount Road, Winnipeg MB R2X 2W6 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
scope	
000	Specialty Alloys.
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
Name Address	
	1195 Michener Road, Sarnia ON N7S 4W3 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
	Specialty Alloys.
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
Named Address	5775 Kieran Street, St-Laurent QC H4S 0A3 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
	Specialty Alloys.
0 6 6 0 0	
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
5 8 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	#100, 112 Strathmoor Drive, Sherwook Park AB T8H 2B7 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Specialty Alloys.
6 6 2 6 6 6 6 6 6 6 6 6	
Name& Address	Canadian Specialty Metals ULC (dba ASA Alloys/Magna Stainless)
	334-68th Street E.,Saskatoon Sk S7P 0E3 Canada
Scope	Distribution of Stainless Steel and Aluminum Bars, Rods, Plates, Pipes, Sheets, Extrusions and
Scope	
	Specialty Alloys.

PERRY JOHNSON REGISTRARS, INC.

Certificate of Registration

Perry Johnson Registrars, Inc., has audited the Quality Management System of:

CSM ULC DBA ASA ALLOYS INC. 81 Steinway Boulevard, Etobicoke, ON M9W 6H6 Canada

(Hereinafter called the Organization) and hereby declares that Organization is in conformance with:

ISO 9001:2015 and AS9120B

This Registration is in respect to the following scope:

Distribution of Aluminum Alloys, Stainless Steel and Specialty Metals

(The assessment was performed in accordance with AS9104/1:2012-01. PJR is accredited under the ICOP scheme)

This Registration is granted subject to the system rules governing the Registration referred to above, and the Organization hereby covenants with the Assessment body duty to observe and comply with the said rules.

Terry Boboige, President

Perry Johnson Registrars, Inc. (PJR) 755 West Big Beaver Road, Suite 1340 Troy, Michigan 48084 (248) 358-3388

The validity of this certificate is dependent upon ongoing surveillance.

Effective Date: July 2, 2024 Expiration Date: July 1, 2027 Certificate No.: C2024-03778

